Kepler User Manual

Kepler<s=

-
.

Version 2.4
March 2013

Table of Contents

1. INTRODUCTION TO KEPLER......cccistiimmemmmsnmsssnssnssssssssssssnssassmsanssns 6
1.1 WHAT IS KEPLER7? ..t ss s e ss s st ss st b s sssssss s ss s bbb am s snsss s nnanans 6
T.1.T FEALUTES it ss s bbb bbb bbbt e se bt 9

B N ol 1 L= od 10) o <D 11
1.2 HISTORY OF THE KEPLER PROJECT couuiuunirsssrnssesssasssasssassssnes 13
1.3 KEPLER CODE CONTRIBUTORScititiminisirinisssssssisssasanns 15
I T O M0 2 O 10 YN 17
1.5 PARTICIPATING IN KEPLER DEVELOPMENT ..ucsiuitrsreresesecssssssssssssssesesssssssssssssssssssssssssssasssssssssssssssssssaes 19
1.5.1 USING ECHPSE coueeeereieieeeet et sessse st e sses s sssssssssss s ssssse s ssss s s ssssssssans 21
1.5.2 Contributing t0 KePLeT ...ttt ssssssans 22
1.6 REPORTING BUGS.cuiuiiiccerererssecssmsessssssssssssssssssssssssssssssasssssssssssssssssssessssssssssssasssssssssssssssssssasssssssssessasassnns 22
1.7 FURTHER READING..uiuiicscemreressssescssesesssessssssssssssasssssssssssssssssssassssssssssssnsasnns 22
2. INSTALLING AND RUNNING KEPLERcccccurrrmsmssssssssssssssesssssssssssssssssssssasssssssssssssssssssssnssnsss 24
2.1 SYSTEM REQUIREMENTS vuutvuriesseessessssssesssessasssasssssesssssasssaness 24
2.2 INSTALLING KEPLER....iuiiiciisrsesssssssessessssssssesssssssssssessssssssssssssesessssssssssssessassssssssssssssssssesssssssssnsssssssssasenes 24
2.2.1 InStalling 0N WINAOWS ..o.cuueeeeseeseerserseesseesseessesssssssssssssssessesssssssesssessssssssssssesssssssessssssssesssssens 24
2.2.3 Installing 0n MacCiNEOSH ...t ssss s ss s 25
2.2.4 InStalliNg ON LINUX couveeeereeeeeseeseeseessessessseesseessessssessssssessssesssesssessseessessssssssssssessssssssssssesssssssesens 26
2.3 STARTING KEPLER ...cetititieicmisrsessssssesssssessssssessssssssssssssssssssssssssssesssssssessssssessanenes 26
2.4 THE USER INTERFACE ..ottt ssssssss e ssss st s s st sss s s sssssssss s sssssssssss s ssssasssasasanans 28
T WY = s LD 7) PP 29
30 o Yo L o Y- U 33
2.4.3 Components, Data Access, and OULHNE ATEAScurereereereennesssenseeseesesssesssssssssssessssssesees 35
2.4.4 WOTKIIOW CANVAS ...cctiriciistecsec st esss s sesssss s bessssssssssssessssssssssssssssssasssssssssssssans 40
2.4.5 NAVIGATION AT ..curvucereerreeeenreeseessessessesssessessse s essssssss s es s s bbb 42

3. SCIENTIFIC WORKFLOWS ...t crritsssesssmssessssasssssssssssssssnsssssssnsssssssnsssssssnsssssssnssasassnssassssnssnsses 44
3.1 WHAT IS A SCIENTIFIC WORKFLOW? ..vrtitiuicecmsisssssssssssssssssssssssesssenes 45
3.2 COMPONENTS OF A WORKFLOW ...uciieiiritinscssmsssss s ssssssssssssssssesssasssssssasasenes 46
S 0 /200 N L =T o0) PP RP 47
2 Vot 0) o 48
3.2.3 COMPOSILE ACLOTS vuverreeuerersereesressesserssessesssesssesssssses s sssssesssesss s sssssesssssss s s sesasessssasesaees 55
I 3 2 o) - 56
3.2.5 Channels and TOKEIS ... sss s ssss s sss s ssss s sss s s s sssssssssssassaes 60
3.2.6 DAtA TYPES coreeercemeeeerreessessesssesseessesses s s ssssse s ssssssss s es s s e 61
R (=3 F: U o) s LT 63
T S 20 =Y =) 010 L= 1<) oo P PR 64

4. WORKING WITH EXISTING SCIENTIFIC WORKFLOWS........ccocnrnrrrersmsnrsessessssessessssnssnns 68
4.7 OPENING WORKFLOWS...tetttisisiecsssersssssesessssssssssssnssssssssssssssssassssssssssssssassssssssssssassssssssssssssasasssssssssssassssssssns 63
4.1.1 Opening LoCal WOTKIIOWS ...t iectseesesse e ssssssssesss s sssssssssssssessssssssssessesas 68
4.2 RUNNING WORKFLOWS ..cvetititirccesssissssscsssssssss s sssssssssssssssssssssssssasssssssssssssssssssssssssssssssssassssssssssssasssssssnns 70
4.2.1 RUNTIME WINAOW ettt ssss s bbb ssss st ss s ssssssssssassssnens 70
A R) 1 21110 o T 72

4.2.3 Running Workflows with Adjusted Parameterseeneeseensesesseessesssesseens 74

4.3 MODIFYING WORKFLOWS ...coeustrereasessssessessssesssssssesssssssesssssssesssssssesssssssessssssssssssssssssssssssssssssssnsssssssnssessssses 78

4.3.1 SUDSTTULING DAtA SELS ..coueurieeieeeectreesesse et sessse s sss s s bbb s 79
4.3.2 Substituting Analytical COMPONENTS......couerienreureenreereeneereeserseessesssesssssesssssssssesssessssssssssssesns 86
4.4 SAVING WORKFLOWS ...ctitrtnssssressssesessssssssssessssssessssssesssssssssssssessenssnsssnsanes 89
4.5 SEARCHING FOR DATA AND COMPONENTS.....cvtevtrerresensenseaessessesssasessssesns 89
4.5.1 Searching for AVailable Data ... sesssssssesss s sssssssss s ssssssssssssssns 89
4.5.2 Searching for Standard COMPONENLSuuriureueereereesesseessesssessesssesssssessssssessesssessssssssssssesns 93
4.5.3 Searching for Components in the Kepler Repository......enneeneeseesneesnsesnsennne. 94
BUILDING WORKFLOWS WITH EXISTING ACTORS.cccounmmmnmmmsmmmssssssssssssssssssssssans 97
5.1 PROTOTYPING WORKFLOWScureuetetreusenstreassssssessssssesssssesssssssssssssssssssssssesssssssessssssesassessessssassesasssssasassens 98
5.2. CHOOSING A DIRECTOR...ccostreurerstreusestreassssressssseessssssssssssssesssssssessssssesssssssssssssssesssssssesassssessssssessssssesans 101
5.2.1 Synchronous Dataflow (SDF) .. ssssssssssssssssssssssssssssssssess 104
5.2.2 Process NetWOTKS (PN sssees 109
5.2.3 Discrete EVENtS (DE)....coueeeernmeeeesseessesssessesssessssssssssesssesssessssssssessessssssssssssssssesssessass 110
5.2.4 CONLINUOUS TIIME ..reerreeeereeeneeseesseesseessessseesseesssesssesssssssessssesssssssessseessessssssssesssesssssssssssesssesssesass 112
5.2.5 Dynamic Dataflow (DDF) . seseceseeessisesssessans 115
5.3 USING EXISTING ACTORS ..cctrerererreaseresressssssressssssessssssssssssessssssssssssssesssssssssssssssessessssssssssssessssssssssssssesans 120
5.3.1 Using Actors from the Standard Component LiDraryeeneeeeeesseeens 120
5.3.2 Instantiating Actors Not Included in the Standard Library ... 121
5.3.3 Using the Kepler Analytical Component RepoSitoryemenmeneenserseeseeseessesneens 124
5.3.4 Saving AcCtors t0 YOUT LiDIary ... ecneeeeeesseessesssesssessseessessssssssesssesssssssesssesssessssesnss 126
5.3.5 Importing Actors as KAR Files......oeeeeseeessesseeseessssessssssssessesssessssessesnss 128
5.3.6 Actor Icon Families....ssss s 128
5.4 USING COMPOSITE ACTORS....ommituumssusssanans 137
5.4.1 Benefits of COMPOSItE ACLOIS ..oueuerreemreerreceseeesersersseesssesssesssessseessessssssssesssesssssssssssesssessssesass 139
5.4.2 Creating COMPOSItE ACLOTS .. erereesreesseerseessessesssessssesssesssessseessessssssssesssesssss s sssesssessseesass 140
5.4.3 Saving COMPOSITE ACLOTS ...cueeurieeeueeeeereessessesssesssessessessessesssssssssessse st sessse s sssssessssssssasess 145
5.4.4 Combining Models of COMPULATIONvuucureererrriseeeseesseeseessecssessssesssssessssssssesssessssessessans 146
5.5 USING THE EXTERNALEXECUTION ACTOR TO LAUNCH AN EXTERNAL APPLICATION.....cccecveveenes 146
5.5.1. Opening the HelloWorld AppliCation ... eeeeseessernmermeesseesseessessessseesssesssessssesseesseesans 147
5.5.2 Opening @ LOCal BIOWSET ... esseesss st ssssse s ssssssssssssesasess 149
5.5.3 Opening the Maxent APPlICAtION ... ecereeereeeeeesseerssessees s sssessseessesans 150
5.5.4 OPENING Rcoreeeereeeer et sess s s s ss s s s s s ssss s 156
5.6 ITERATING AND LOOPING WORKFLOWS.....commmiussssssmsssanens 158
5.6.1 Iterating With the SDF Dir@CtOr......oeeneeenecreeeeseiseeseesseisessssseessesssessesssesssssssssssssssasees 159
5.6.2 Using Ramp and RePEat ACLOTSoeerrecereeemeeeesseesssesssesssessseessessssssssssssssssssssesssessssssssesans 160
5.6.3 Using Arrays Instead of Iteratingccueeeeneeeesnmernmeeseesseesseesssssesssessssessesssesssessssesnns 163
5.6.4 Iterating with Higher-Order COMPOSILESccoumeereenreereeserseeseeeesseesessessesseessessessseseens 166
5.6.5 Creating Feedback LOOPS. ... sesseesss s ssessesssesss s ssssssssssssssasess 167
5.7 DOCUMENTING WORKFLOWSctvuetetressssseessssssesssessssssssssssssesssssssesssssssesans 168
5.7.1 ANNOLAtION ACLOTS cuuueuiirerreseissess st ssssssssssasssssssssssssssssasess 169
5.7.2 Documentation MENU.....ereresees s s ssssssssssssssssssssssssssass 169
5.8 DEBUGGING WORKFLOWS......couettreststreasssssressesssesssssssssssssesssssssessssssesssssssssssssssessssssessssassessssssessssssesans 170
5.8.1 Animating WOTKFIIOWS ... sesssesssesssessesssessssessessssssssssssssssss s ssssssssssssssnss 170
TR 720 25 (ol =] 1 [0) 1= PP 171
5.8.3 Checking SyStem SETEINESccoriurereeneeereererseeserseessesssessesessessse e sess s s sssssssssssssssees 172
5.8.4 Listening to the DIreCtor ... 173
5.9 SAVING AND SHARING WORKFLOWS.vuvtrmurresesessessessessessessessessessesssssssssssssssssssssssssssssssssessssssssssssassnes 174

5.9.1 Saving and Sharing Your Workflows as KAR or XML Filescccunnenneennenneennens 174

5.9.2 Opening and Running a Shared XML WOTKflOWoocomrerecrneeennirnseeseessseessessseessecsseeenns 174

6. WORKING WITH DATA SETSoocirmsismsmsmssmssassaes 177
6.1 DATA ACTORS .. ceueetrereusereeaseressssssessssssessssssessssssessssssessssssessssesesssssssssssesesssesssssssesssssesssnssensssssesssnssenssnsensane 177
6.2 USING TABULAR DATA SETS WITH METADATA ...covvrresrreresssessssssessssssessssssessssssessssssesssssssssssssessssssssans 179

6.2.1 VIEWING METAAALAoveereereeeeeeesseerseeisesssesssecssesssss s sssesssssssssssssss s sessss s sssssssss s sssssssessssssans 188
6.2.2 Outputting Data for Use in @ WOrKflOW.......connennneeneeneseeseeeceseesesesesseesseesesaseseens 188
6.2.3 QUETYING MELAAALA ..coveueueereereeereeeeseeeet e s sesss bbb bbb s 191
6.3 USING TABULAR DATA WITHOUT METADATA....cccotrtresrreresssessssssessssssessssssessssssessssssesssssssssssssenssssssasans 193
6.3.1 Comma- Tab-, Text-Delimited FIleS ... sesssssssesssssssssns 194
6.3.2 Accessing Data from @ WEDSILE ...t sessesss e sssssssssssssssnees 196
6.4 ACCESSING DATA ACCESS PROTOCOL (DAP) SOURCES ..cvevvuumeressssessssssssessssssssessssssssesssssssssssssannns 198
6.5 ACCESSING DATA FROM DATATURBINE SERVERS w..ccuvvureureurerernesessssssssssssssssssssssssssssssessssssssssssssssnss 199
6.6 USING FTP oottt sssssssss s bbb ssssss s ssssssssssssssssaens 201
6.7 USING DATA STORED IN RELATIONAL DATABASES ...covutrertrmsresessssessessssesssssssesssssssesssssssesssssssssssssssens 202
6.8 USING SPATIAL AND IMAGE DATA ..ottt snessss st sssssssesssssssessans 205
6.8.1 Working With IMagesc.cceenemeeneereeneireesesseeseeses s sssssssssssssssssssssssesssesssssssssssssssssssssssees 206
6.8.2 Working with Spatial Datacoceeeeeesreersseeereeseesssesssesssessseessessssssesssesssssssssssesssessseesans 210
6.9 USING GENE AND PROTEIN SEQUENCE DATA ..coumiveereresessssssssssssssssessanees 213

7. USING REMOTE COMPUTING RESOURCES: THE CLUSTER, GRID AND WEB

SERVIICES......oiiciiisimssssssssssssssssssssss s sss s s sas s s s AR AR R R0 215
7.1 DATA MOVEMENT AND MANAGEMENT ...cvvtresureressreresssreressssessssssesessssessssssesssssesasssensssssessasssensssssessane 216

7.1.1 Saving and Sharing Data on the EarthGridc.oeeeeeneeneenesseesssessensseesseesseeenns 216
7.1.2. SECUTE COPY (SCP) rerreeereeereerrernseesseessmessesssesssesssessssesssesssessssssssssssesssasssessssssssesssassssssssssssasssessssssans 219
78 S 26 & T) i 1 N 221
7.1.4 Storage Resource BroKer (SRB)ocerneeessesneeseesseessssssssssesssssssssssesssesssessseenss 224
7.1.5 Integrated Rule-Oriented Data System (IRODS)ccovemeereerneeenneemeesseesseessnensseesseesseeenns 229
7.2 REMOTE SERVICE EXECUTION ..cotetustressussressssresssesesssssessssesessssessssssessssssessssssesssssssssssssesssssssssasssessssssssane 230
7.2.1 USING WED SETVICES ..oreueueenriereeereeeeseieetseesessessseseessessesssssss s sssss s ssssssssesssssasens 231
7.2.2 USING REST SEIVICES...cciiuieurerererersesessessessesssssssssessessessssssesssssssssssssssssessesssessssssessssssssssssssasess 235
7.2.2 USING SOAPLAD SEIVICES oueeueeerereereerreesseesseesseessssse s ssesssesssesssessssssssesssssssss e sssssssssssessass 236
7.2.3 USING OPAl SEIVICES ..orrvueuremeereeureeeesseseesseessessssssessessessessssssssssssssssssss st sesssessssasesssssssssessssssees 239
7.3 JOB SUBMISSIONoouuumeressusmssssssssesssssssssssssssssssssssesssssasssssssssssessssssssssssssssesssssssssssssassesssssssssssssassesssssasnnns 241
7.3.1 CluSter JOD SUDMISSION c..vuueereeriereeseietseeseissisesssessesssssss st s sssssssssssssssasees 241
AR A €5 To B [0 ST 0 Lo} 01 17 () o 0O 244

8. MATHEMATICAL, DATA ANALYSIS, AND VISUALIZATION PACKAGES.......c.cccovueuens 250

8.1 EXPRESSIONS AND THE EXPRESSION ACTOR.....ccestrurrenerssressesssresssssssessessssesssssssessssssssssssssssssssssssssssssssans 250
8.1.1 The EXPressions LAaNGUAZEc.ccueeeerreersmerseressseessesssesssessseesssssssssssessssssssssssesssesssesssessans 250
8.1.2 EXpressions and Parameters... ... eeeneesnesnsessessesseesssssssssssssssesssessssssssssssssssssssssasess 264
8.1.3 Expressions and Port Parameters...... o nneneeeeseissesesecssessesssssessssssssssssssssees 265
8.1.4 Expressions and String Parameters ... 266
8.1.5 The EXPIeSSION ACLOT ..c.cuieuieeeeeseeesesssessseeessesssssssesssessssesssssssssssessssssssssssssssssssssssssssessssssssssass 267

8.2 STATISTICAL COMPUTING: KEPLER AND R ...ttt sssse s sssseseanane 270
8.2.1 WRAL IS R7 .ot sssssssss s sss s ssess s 270
8.2.2 INSTAIlING R oottt sesssess s ss s ss s s s s s s enr s 271
8.2.3 USEfUI R ACLOTS ettt st ssssss s ssssss s sssssssssssssssssssssssssssssasssssssssssssssssasess 271
8.2.4 WOrking With R ACEOTS ..t reeseiseesseeses s sses st sessss st sessssssees 273

8.3 STATISTICAL COMPUTING: MATLAB ..ttt ettt sttt st sss s ssssssnnnns 285

8.4 IMAGE MANIPULATION: IMAGE]...vvvvvveesssssssssssssssessssssssssssssssssssssnsssessssssssssssssssssssssnnssesssssssssssssssssssssnnnns 288

8.4.1 Intro to Image] and the IMage] ACLOT ... sssssssseseesans 289

ES T S/ W o TSI § 1 €= Uod 03 ot o) 296
8.5 SPATIAL DATA: GEOGRAPHIC INFORMATION SYSTEMS (GIS).eiureerieereereenseeeeeseesesseeseseessesssessesnees 298
8.5.1 Masking a Geographical Area with the ConvexHull and CVToRaster Actors....... 299
8.5.2 Geospatial Data Abstraction Library (GDAL) ACLOTS....ceneenseeseessseessesssessseesseesnns 301

9. DOMAIN SPECIFIC WORKFLOWS ..o ssssssssssssssssssssssssssssns 305
9.1 CHEMISTRY oovuuiussisssssssssssssessssssssssssssssssssssssessssssss bbb bbb b bbb 305
9.2 ECOLOGY wevurerussessssssssssssesssssssssssssssssssssssssssss s sssssss bbb bbb 306
9.3 GEOLOGY wvvuseressisssssssssessssssssssssssssssssssssssssssssss s ssss bbb bbb 308
9.4 MOLECULAR BIOLOGY cuuturtcurtrereusereeaseressssesssesessssesessssessssssessssssessssssessssssesssnesessssssssssessssssessssssenssnsssasane 310
9.5 OCEANOGRAPHY c.otrivuiitssissssssssssssssssssssssssss s ssss bbb s bbb bbb 311
9.6 PHYLOGENY ...cvuuirusiassessssesssesssssssssssssssssssssssssessssssss s ss s ss bbb sssss s ssssssssaens 312
APPENDIX A: CREATING NEW ACTORScuoumsmnmmmmmmsmsmssmsssmssssssssssssssssssssssssssssssssssssasssssssssssassns 314
A.1 BUILDING A CUSTOM ACTOR BASED ON AN EXISTING ACTOR ..ccsveemerererreresasererssseressasesessssessassreeas 314
A.2 CREATING A NEW ACTOR BY EXTENDING A JAVA CLASS ..vueversuesssssusesssssssessssssssssssssssesssssssssssssans 316
A.2.1 COAING @ NEW ACLOT ..o iuieeeerereeseeeeeseesesseessesssessessesss s sssssesssssss st sessses s sssssssssssssesssssssnes 317
A.2.2 COMPIlING @ NEW ACLOT ccouieeiereeeceeeeseeseesseessessseessesssesssesssesssesssesssssssesssessssssssssssssssesssessssesss 328
A.3 SHARING AN ACTOR: CREATING A KAR FILE ...ttt sse e ssesessssesessssensassenens 328
A.3.1 The Manifest File.... it seesseessessssssssssssssssssss s ssssss s sssssssssssssssseses 328
A.3.2 The MOML FIle..uiieieserssaens 329
APPENDIX B: MODULES.cconmsmcmmmmmmmsssassssns 331
B.1 THE MODULE MANAGERcstseurereresseressassressssressssesesssssssssssesessssssssssssessssessssssessssssensasssensssssessssssensssssessane 331
B.2 DEVELOPING MODULES ..ccttttntusseessssesssssesssssessssssesssssssssssesssessssssssssssssssssssssssne 333
APPENDIX C: USING R IN KEPLERcconmmnmmmmnmmmmssns 334
C.1 INSTALLING R ettt sssene st ses s e st e s ssese st se s ssesessssassssssesessssensssssessssssenssnssenssnssenssnssensansnensane 334
C.2 A BRIEF OVERVIEW OF R .ottt sssse s ssesessssessssssesesssssssssssesssssssssasssensssssessasesenssssensane 334
C.2.1 DAt ODJECES . eueeueereeureeseseesseeseessesssessesseessesssessssssessessessesss s bbb s s saeens 336
L0020 1D 1 o (ol 1 10) L 337
C.2.3 FUIthEr RESOUICESceereeeeeneemeemeeseersessees s seessse s sssesssesssssssssssessssssss s sssess s sssesssessssssnss 337
C.3 THE REXPRESSION ACTOR ..oeeururereureresassressssssessssesesssssssssseessssssssssesesssssssssssssssssesssssesssssssssssssensssssessane 338
O 700 0 0001 T 339
C.3.2 OULPULS covereeesesseersersressseesseessesssseessesssessseesssesssessseessessssssssesssess s sssesssesssessssssssesssessssssssesssesssesssessass 342
C.4 HANDLING DATA. oot eteerteeertressssessestsesasssesssssessssssessssssessssesesssssssssssesesssssnsssssesssssssssnssenssnsessanssenssnssensane 346
O 00 1 oY 0t 0¥ D - v O 346

0N 307/ 0 101 010 LY o Vg D U LT 363
C.5 EXAMPLE R SCRIPTS AND FUNCTIONS ..vvtreueteetreseresressssseesesssssessssssessssssssssssssessssssssssssssesssssssssesssesans 366
C.5.1 Simple Linear ReGIreSSIONoueereesreessecrseessersessseesssesssessseesseessssssssssesssssssssssesssesssssssessass 366
(.5.2 BaSIC PLOTHING ..cvueueercereereeeeseeseessetseeseeess s sssss s bbb s 368
C.5.3 SUMMATY STATISTICS currvureureenreereeuretseessee et seese e ees s sesss s s s st e 370
(ORI 3 D o (0] 11V 371
C.5.5 Biodiversity and Ecological Analysis and Modeling (BEAM)........cconenernmeesseceseennne 372
C.5.6 RANAOM SAMPIINE ...curiiriuiiriereeuseireesseeeee et essessessessesss s ses bbb sss s ssssanees 375
C.5.7 CuStom REXPIESSION ACLOTS ..covvuueuieeeereessesseesseseessesssessessessssssssssssss s sesssssss s ssssssssssssssasees 376

APPENDIX: GLOSSARY ...t sssasasassssens 388

Chapter 1

1. Introduction to Kepler

Scientists in a variety of disciplines (e.g., biology, ecology, astronomy) need access to
scientific data and flexible means for executing complex analyses on those data. Such
analyses can be captured as scientific workflows in which the flow of data from one
analytical step to another is captured in a formal workflow language. The Kepler project's
overall goal is to produce an open-source scientific workflow system that allows
scientists to design scientific workflows and execute them efficiently either locally or
through emerging Grid-based approaches to distributed computation.

1.1 What is Kepler?

Kepler is a software application for the analysis and modeling of scientific data.
Using Kepler's graphical interface and components, scientists with little background
in computer science can create executable scientific workflows, which are flexible
tools for accessing scientific data (streaming sensor data, medical and satellite
images, simulation output, observational data, etc.) and executing complex analysis
on the retrieved data (Figure 1.1).

Chapter 1

[0
)

K file /O P rogram ™ 20F iles Keplor /demos /ENM/GARP _SingleSpecies_BestRuleSet-IV xml -J\0
Ble Edt Vew Wokflow Tods Window el

YOO UL L AL IL JidPaiie

Components Data Outhine

.
Search Components @ -
Adywne Sources » _ .
DD ewciony sroparn WEPLER+ AL s atn jay
'
)

All Ontologies and Folders

.

© Mephitis_mephitis_MergedResult asc -0 m
0 rests fournd 1720300 pieets, 32-pig, 1012k
- s _J
o
Bl
-
L * P = ’

| exn0uton Frished.

Figure 1.1 A scientific workflow (GARP_SingleSpecies_BestRuleSet-1V.xml) displayed in the Kepler
interface. This workflow processes species occurrence data to create an ecological niche model.

Kepler includes distributed computing technologies that allow scientists to share
their data and workflows with other scientists and to use data and analytical
workflows from others around the world. Kepler also provides access to a
continually expanding, geographically distributed set of data repositories,
computing resources, and workflow libraries (e.g., ecological data from field
stations, specimen data from museum collections, data from the geosciences, etc.)
(Figure 1.2).

Chapter 1

SDF Director

ImageJ

R_linear_regression

T 1 R_tnear_tegressiont pag ;__ga
{00480 pcels, G-t 225F |

Figure 1.2: A workflow (eml-simple-linearRegression-R.xml) that performs and plots a simple linear

regression on a meteorological data set stored remotely on the EarthGrid and accessed via a workflow
actor.

The Kepler system aims at supporting very different kinds of workflows, ranging
from low-level “plumbing” workflows of interest to Grid engineers, to analytical
knowledge discovery workflows for scientists (Figure 1.3), and conceptual-level
design workflows that might become executable only as a result of subsequent
refinement steps.!

! Ludascher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao.
2005. Scientific Workflow Management and the Kepler System, DOI: 10.1002/cpe.994

Chapter 1

PN Director @dir_log: HOME + "spa/PIW*

$Revision: 1.1 %
$Author: xin $

ssionNumberList

pressond

Sequence ToAray

ArayToSequence Gene Sequende ProcesH

] Fagta Cutput

Run Clustaiw

Merge and Discard

Parse Clustal

Figure 1.3: The Promoter Identification Workflow, a typical scientific knowledge discovery workflow that
links genomic biology techniques such as microarrays with bioinformatics tools such as BLAST to identify
and characterize eukaryotic promoters.

Kepler builds upon the mature Ptolemy Il framework, developed at the University of
California, Berkeley. Other scientific workflow environments include academic
systems such as SCIRun, Triana, Taverna, and commercial systems
(Scitegic/Pipeline-Pilot, Inforsense/Accelrys).?2 For a detailed discussion of these
and other workflow systems, please see
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf.

1.1.1 Features

Z Altintas, I, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, S. Mock, Kepler: An Extensible System for
Design and Execution of Scientific Workflows, system demonstration, 16th Intl. Conf. on Scientific
and Statistical Database Management (SSDBM'04), 21-23 June 2004, Santorini Island, Greece.

http://ptolemy.eecs.berkeley.edu/ptolemyII
http://software.sci.utah.edu/scirun.html
http://www.trianacode.org/
http://www.taverna.org.uk/
http://accelrys.com/
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

Chapter 1

Using Kepler, scientists can capture workflows in a format that can easily be
exchanged, archived, versioned, and executed. Both Kepler’s intuitive GUI (inherited
from Ptolemy) for design and execution, and its actor-oriented modeling paradigm
make it a very versatile tool for scientific workflow design, prototyping, execution,
and reuse for both workflow engineers and end users. Kepler workflows can be
exchanged in XML using Ptolemy’s own Modeling Markup Language (MoML). Kepler
currently provides the following features: 3

Access to Scientific Data: The Kepler component library contains an Ecological
Metadata Language (EML) ingestion actor (EMLZDataset) used to access, download,
and preview EML described data sources. The EMLZ2Dataset actor allows Kepler to
import a multitude of heterogeneous data, making it a very flexible tool for
scientists who often deal with many data and file formats. A similar actor exists for
Darwin Core-described data sets (DarwinCoreDataSource). In addition, Kepler's
ReadTable actor allows users to access and incorporate data stored in Excel files.

Graphical User Interface: Users can build workflows via Kepler's intuitive
graphical interface. Components are dragged and dropped onto a Workflow canvas,
where they can be connected, customized, and then executed.

Distributed Execution (Web and Grid-Services): Kepler’'s Web and Grid service
actors allow scientists to utilize computational resources on the net in a distributed
scientific workflow. Kepler’'s generic WebService actor provides the user with an
interface to seamlessly plug in and execute any WSDL-defined Web service. In
addition to generic Web services, Kepler also includes specialized actors for
executing jobs on the Grid, e.g., actors for certificate-based authentication (SProxy or
GlobusProxy), Grid job submission (Globusjob), and Grid-based data access
(GridFTP). Third-party data transfer on the Grid can be established using GridFTP
and SRB (Storage Resource Broker) actors.

Prototyping Workflows: Kepler allows scientists to prototype workflows before
implementing the actual code needed for execution. Kepler’'s Composite actor can be
used as a “blank slate” that prompts the scientist for critical information about an
actor, e.g., the actor’s name and port information.

Searchable Libraries: Kepler has a searchable library of actors and data sources
(found under the Components and Data tabs of the application) with numerous
reusable Kepler components and an ever-growing collection of data sets.

Database Access and Querying: Kepler includes database actors, such as the
DBConnect actor, which emits a database connection token (after user login) to be
used by any downstream DBQuery actor that needs it.

3 1bid.

10

Chapter 1

Other Execution Environments: Supporting foreign language interfaces via the
Java Native Interface (JNI) gives the user flexibility to reuse existing analysis
components and to target appropriate computational tools. For example, Kepler
(through Ptolemy) already includes a Matlab actor. Actors that execute R code
(RExpression, Correlation, RMean, RMedian, and others) are also included in the
standard actor library. Any application that can be executed on the command line
can also be executed by the Kepler CommandLineExec actor.

Data Transformation: Kepler includes a suite of data transformation actors (XSLT,
XQuery, Per], etc.) for linking semantically compatible but syntactically incompatible
Web services together.

Flexible Execution: The BrowserUI actor is used for injecting user control and
input, as well as output of legacy applications anywhere in a workflow via the user’s
Web browser. Kepler workflows can also be run in batch mode using Ptolemy’s
background execution feature.

Configurable Libraries: Users can configure their own actor libraries via a
semantic type interface, or download (and upload) additional actors from the Kepler
repository. Actors can be created and added to the local library by semantically
annotating them, using a Seman

1.1.2 Architecture

Kepler builds upon the mature Ptolemy Il framework, developed at the University of
California, Berkeley. Ptolemy II is a software framework developed as part of the
Ptolemy project, which studies modeling, simulation, and design of concurrent, real-
time, embedded systems. Kepler 2.4 is based on Ptolemy II 9.1.

Kepler inherits from Ptolemy the actor-oriented modeling paradigm that separates
workflow components (“actors") from the overall workflow orchestration (conducted by
"directors™), making components more easily reusable. Through the actor-oriented and
hierarchical modeling features built into Ptolemy, Kepler scientific workflows can
operate at very different levels of granularity, from low-level "plumbing workflows™ (that
explicitly move data around or start and monitor remote jobs, for example) to high-level
"conceptual workflows™ that interlink complex, domain-specific data analysis steps.
Kepler also inherits modeling and design capabilities from Ptolemy, including the Vergil
graphical user interface and workflow scheduling and execution capabilities.

Kepler extensions to Ptolemy include an ever increasing number of components (called
"actors") aimed particularly at scientific applications: remote data and metadata access,
data transformations, data analysis, interfacing with legacy applications, Web service
invocation and deployment, and provenance tracking, among others. Target application
areas include bioinformatics, computational chemistry, ecoinformatics, and
geoinformatics.

11

http://ptolemy.eecs.berkeley.edu/ptolemyII
http://ptolemy.eecs.berkeley.edu/

Chapter 1

Ptolemy/Vergil (A Very Brief Overview)

Ptolemy Il, developed at the University of California, Berkeley, is an open-source
software framework developed as part of the Ptolemy project. Ptolemy Il is a Java-based
component assembly framework with a graphical user interface called Vergil.

The Ptolemy project studies modeling, simulation, and design of concurrent, real-
time, embedded systems. The focus is on embedded systems, particularly those that
mix technologies including, for example, analog and digital electronics, hardware
and software, and electronics and mechanical devices. The focus is also on systems
that are complex in the sense that they mix widely different operations, such as
networking, signal processing, feedback control, mode changes, sequential decision
making, and user interfaces.*

Ptolemy II takes a component view of design, in that models are constructed as a set
of interacting components. A model of computation governs the semantics of the
interaction, and thus imposes a discipline on the interaction of components.>

Ptolemy II offers a unified infrastructure for implementations of a number of models
of computation. The overall architecture consists of a set of packages that provide
generic support for all models of computation and a set of packages that provide
more specialized support for particular models of computation. Examples of the
former include packages that contain math libraries, graph algorithms, an
interpreted expression language, signal plotters, and interfaces to media capabilities
such as audio. Examples of the latter include packages that support clustered graph
representations of models, packages that support executable models, and domains,
which are packages that implement a particular model of computation.®

The Vergil GUI is a visual editor written in Java. Using Vergil, users can graphically
construct and run scientific workflows. For more information about Vergil, see the
Ptolemy documentation.

Modeling Markup Language (MoML)

Modeling Markup Language (MoML), the primary persistent file format for Ptolemy
Il models, is an Extensible Markup Language (XML) schema. It is intended

4 Hylands, Christopher, Edward Lee, Jie Liu, Xiaojun Liu, Stephen Neuendorffer, Yuhong Xiong, Yang
Zhao, Haiyang Zheng, Ptolemy Overview,
http://www.ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf

5 Ibid.

8 Ibid.

12

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Chapter 1

for specifying interconnections of parameterized components, and is the primary
mechanism for constructing models whose definition and execution is distributed
over the network.”

The key features of MoML include:8

e Web integration. MoML is an XML schema intended for use on the Internet. File
references are via URIs (in practice, URLs), both relative and absolute, so MoML is
equally comfortable working in applets and applications.

o Implementation independence. MoML is designed to work with a variety of
modeling tools.

» Extensibility. Components can be parameterized in two ways. First, they can have
named properties with string values. Second, they can be associated with an
external configuration file that can be in any format understood by the component.
Typically, the configuration will be in some other XML schema, such as PlotML or
SVG (scalable vector graphics).

e Classes and inheritance. Components can be defined in MoML as classes which can
then be instantiated in a model. Components can extend other components through
an object-oriented inheritance mechanism.

e Semantics independence. MoML defines no semantics for an interconnection of
components. It represents only the hierarchical containment relationships between
entities with properties, their ports, and the connections between their ports. In
Ptolemy II, the meaning of a connection (the semantics of the model) is defined by
the director for the model, which is a property of the top level entity. The director
defines the semantics of the interconnection. MoML knows nothing about directors
except that they are instances of classes that can be loaded by the class loader and
assigned as properties.

For detailed information about MOML and its syntax, please see the Ptolemy user
manual, Chapter 7.

1.2 History of the Kepler Project

Kepler was founded in 2002 by researchers at the National Center for Ecological
Analysis and Synthesis (NCEAS) at University of California Santa Barbara, the San
Diego Supercomputer Center (SDSC) at University of California San Diego, and the
University of California Davis as part of the Science Environment for Ecological
Knowledge (SEEK) and Scientific Data Management (SDM) projects. The Kepler

" Ptolemy User Manual, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf
8 1bid.

13

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.nceas.ucsb.edu/#in_browser
http://www.nceas.ucsb.edu/#in_browser
http://www.sdsc.edu/#in_browser
http://www.sdsc.edu/#in_browser
http://ucdavis.edu/#in_browser
http://seek.ecoinformatics.org/#in_browser
http://sdm.lbl.gov/sdmcenter/#in_browser

Chapter 1

software extends the Ptolemy Il system developed by researchers at the University of
California Berkeley. Although not originally intended for scientific workflows, Ptolemy
Il provides a mature platform for building and executing workflows, and supports
multiple models of computation.

An alpha version of the Kepler software was released in April of 2005. Three beta
versions followed: betal, June 2006; beta2, July 2006; and beta3, January 2007. The first
official release, Version 1, was released on May 2, 2008. Version 2.0.0 was released in
June 2010 with major improvements to the GUI, modular design and KAR handling.
Version 2.1.0 was released Sep 30, 2010, and contained new features and bug-fixes.
Version 2.2.0 was released June 14, 2011, improving memory usage, and fixing many
bugs. Version 2.3.0 was released Jan 20, 2012, improving the GUI and fixing many bugs.
Version 2.4.0 is expected to be released in March 2013.

Kepler is an open collaboration with many contributors from diverse domains of science
and engineering, including ecology, evolutionary biology, molecular biology, geology,
chemistry, computer science, electrical engineering, oceanography, and others. Members
from the following projects are currently contributing to the Kepler project:

e SEEK: Science Environment for Ecological Knowledge

e SDM Center/SPA: SDM Center/Scientific Process Automation

e Ptolemy II: Heterogeneous Modeling and Design

e GEON: Cyberinfrastructure for the Geosciences

e ROADNet: Real-time Observatories, Applications, and Data Management
Network

e EOL: Encyclopedia of Life

o Resurgence

e CIPRes: CyberInfrastructure for Phylogenetic Research

o REAP: Realtime Environment for Analytical Processing

e Kepler/CORE: Development of a Comprehensive, Open, Reliable, and
Extensible Scientific Workflow Infrastructure

e CAMERA: Community Cyberinfrastructure for Advanced Microbial Ecology
Research & Analysis

o DbioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for
Distributed Analysis of Large-Scale Biological Data

Contributing members jointly determine the goals for Kepler as well as contribute to the
design and implementation of the software system. We welcome contributions and
encourage other people and projects to join as contributing members. For more
information about contributing to Kepler, please see Section 1.5.

Some Kepler members receive support from various grants, including but not limited to:
the National Science Foundation under awards 0225676 for SEEK, 0225673
(AWSFL008-DS3) for GEON, 0619060 for REAP, 0722079 for Kepler/CORE, 1062565
for bioKepler, and 0941692 for DISCOSci; the Gordon and Betty Moore Foundation
award to Calit2 at UCSD for CAMERA; by the Department of Energy under Contract

14

http://ptolemy.eecs.berkeley.edu/#in_browser
http://seek.ecoinformatics.org/
https://sdm.lbl.gov/sdmcenter/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://www.geongrid.org/
http://roadnet.ucsd.edu/
http://roadnet.ucsd.edu/
http://www.eol.org/
http://ocikbws.uzh.ch/resurgence/
http://www.phylo.org/
http://reap.ecoinformatics.org/
https://kepler-project.org/users/projects-using-kepler-1/kepler-core-vision-and-mission/
https://kepler-project.org/users/projects-using-kepler-1/kepler-core-vision-and-mission/
http://camera.calit2.net/
http://camera.calit2.net/
http://biokepler.org/
http://biokepler.org/

Chapter 1

No. DE-FC02-01ER25486 for SciDAC/SDM; and by DARPA under Contract No.
F33615-00-C-1703 for Ptolemy.

Work was conducted with logistical support from the National Center for Ecological
Analysis and Synthesis, a Center funded by NSF (Grant #DEB-0553768), the University
of California, Santa Barbara, and the State of California.

Ptolemy receives support in part by the Center for Hybrid and Embedded Software
Systems (CHESS) at UC Berkeley, which receives support from the National Science
Foundation (NSF awards #0720882 (CSR-EHS: PRET), #1035672 (CPS: Medium:
Ptides), and #0931843 (CPS: Large: ActionWebs)), the Naval Research Laboratory
(#NOOI73-12-1-G015), the Multiscale Systems Center (MuSyC), one of six research
centers funded under the Focus Center Research Program, a Semiconductor Research
Corporation program, and the following companies: Bosch, National Instruments, and
Toyota. In the past, CHESS has been sponsored by Agilent, DGIST, General Motors,
Hewlett Packard, Infineon, and Microsoft.

Ptolemy is also supported in part by the TerraSwarm Research Center, one of six centers
supported by the STARnet phase of the Focus Center Research Program (FCRP) a
Semiconductor Research Corporation program sponsored by MARCO and DARPA.

Ptolemy is also supported in part by the Naval Research Laboratory project, "Software
Producibility for System of Systems,” and was accomplished under Cooperative
Agreement Number NOOI173-12-1-G015.

1.3 Kepler Code Contributors

The following people have made contributions to the Kepler code. Contributors are listed
in chronological order of commits to the SVN repository:

Matthew Jones
Chad Berkley
Ilkay Altintas
Zhengang Cheng
Efrat Frank
Bertram Ludaescher
Jing Tao

Steve Mock
Xiaowen Xin

Dan Higgins

Yang Zhao
Christopher Brooks
Tobin Fricke

Rod Spears

15

Werner Krebs
Shawn Bowers
Laura Downey
Wibke Sudholt
Timothy McPhillips
Bing Zhu

Nandita Mangal
Jagan Kommineni
Jenny Wang

John Harris

Kevin Ruland
Matthew Brooke
Oscar Barney
Vitaliy Zavesov
Zhije Guan
Norbert Podhorszki
Samantha Katz
Tristan King

Josh Madin
Kirsten Menger-Anderson
Edward Lee
Daniel Crawl
Derik Barseghian
Lucas Gilbert
Nathan Potter

Ben Leinfelder
Carlos Rueda

Jim Regetz

Sean Riddle
Aaron Schultz
David Welker
Mark Schildhauer
Debi Staggs
Jianwu Wang
Sven Koehler
Faraaz Sareshwala
Daniel Zinn
Madhusudan
Chandrika Sivaramakrishnan
Lei Dou

Merve lldeniz
Gongjing Cao
Manish Anand
Marcin Plociennik
Tomasz Zok
Michal Owsiak

Chapter 1

16

Chapter 1

Contributions to Kepler are welcome. Please see Section 1.5 for details on how to
contribute. Thanks.

1.4 Future Goals

The Kepler project is an ongoing collaboration, and we will continue to refine,
release, and support the Kepler software. Our aim is to improve and enhance the
Kepler scientific workflow system to yield a comprehensive, open, reliable, and
extensible scientific workflow infrastructure suitable for serving a wide variety of
scientific communities.

The goal of future Kepler development is to (i) enable multiple groups in a number
of distinct disciplines to easily create, support, and make available domain-specific
Kepler extensions; (ii) better support those crucial features that are needed by all
disciplines; and (iii) provide for the wide range of deployment scenarios required by
different disciplines and distinct research settings.

More specifically, future goals include making Kepler:

Independently Extensible. Rather than enforcing conventions that might slow
progress in the various disciplines contributing to Kepler, we plan to further enable
independent extensibility of Kepler while making it easy to package domain-specific
contributions in a way that ensures both the stability of the overall system and
clearly indicates what components are expected to work well together.

With the 2.0 release of Kepler, we have created a module system that allows us to
separate Kepler base system functionality from domain-specific extensions. We
have divided Kepler into a set of mandatory modules (the kepler suite); a set of
extension modules that communicate with the kernel via well-defined and generic
extension interfaces; and a number of actor modules for distinct disciplines. We
developed a configuration management system to support downloading, installing,
and updating the Kepler distribution and a Module Manager for discovering and
installing standard and 3rd-party modules and specifying modules to be employed
during execution. With this architecture, third-parties can now develop alternative
modules with additional capabilities suitable for particular science domains.

Consistently Reliable: Reliability for developers and users alike ensures that
Kepler can be applied confidently as dependable cyberinfrastructure. We are
working to ensure run-time reliability (both for when Kepler is used as a desktop
research application and as middleware that other domain-specific applications can
build upon). Our approach of dividing Kepler into the Kepler kernel and extension
set will enable other development teams to freely develop new modules and actor

17

Chapter 1

packages as needed without endangering the stability of the kernel, and even to
replace standard extensions as needed.

Open Architecture, Open Project. We will disseminate plans, designs, and system
documentation as we develop them and provide mechanisms for suggestions and
feedback throughout the course of the project. We will also actively engage the user
community and gather requirements, advice, and feedback on priorities, both from
those already committed to using Kepler (i.e., the Kepler “stakeholders”), and from
scientists who could benefit.

Comprehensive (End-to-End) System. We plan to widen the scope of Kepler by
providing new, fundamental enhancements that will benefit all user communities:
enhancing Kepler with new and improved generic capabilities for data, service, and
workflow management. More specifically, we are working on new and more
comprehensive systems for:

e Data Management. We plan to support data management tasks in a generic
way within the Kepler framework so that all data management tasks (e.g.,
controlling and managing the flow of data into and out of workflows,
comparing and visualizing data and metadata, converting data formats, and
managing data references) are handled transparently by the workflow
execution framework rather than by special-purpose actors.

e External Service and Grid Management. Currently, Kepler workflows that
make extensive use of external services generally use actor-oriented
approaches for managing and accessing those services. We are working to
better enable the system to carry out computations on the optimal set of
computing resources at run time, based on resource availability and
preferences; and to make it easier for users to share and redeploy workflows
in different environments. In addition, we are working on integrated support
for managing authentication and authorization information.

e Workflow Management. Our goal is for Kepler to provide comprehensive
support for end-to-end workflow management—from initial prototyping to
workflow execution. We are working to make the application aware of the
scientific context in which workflows are being run, the flow of data through
and across successive workflows (as is common in scientific research), and
the origin of workflows. In addition, we will continue to improve support for
common workflow management tasks such as designing, storing, and
validating individual workflows; organizing workflows, data, and results
within the context of a particular project or research study; and capturing
and querying the provenance of workflows and data. The Kepler workflow-
run-manager and provenance modules will provide a whole new suite of
functionality for managing workflows.

18

Chapter 1

Please see the Kepler/CORE Web page for detailed information about specific
features that are under development, and/or the Bug base for more features that we
are adding and improving in the coming months.

1.5 Participating in Kepler Development

Kepler is an open source cross-project collaboration, and we welcome contributions
of all types. Participants can get involved by joining a mailing list (either for
developers or users), participating in IRC chat, or getting a Kepler SVN account to
view or contribute to the Kepler source.

Individuals can join the kepler-dev mailing list to interact with the rest of the
development team or the kepler-users mailing list to request and/or exchange user
support. The current list of subscribers is available only to list members and can be
viewed (after subscription) at the mailing list info page.

Many of the Kepler developers use IRC to chat on a daily basis. We use the '#kepler'
channel on irc.ecoinformatics.org:6667 for our discussions. More details on how to
use IRC can be found on the SEEK IRC page.

The code for Kepler is managed in an SVN repository. Read-only access is open for all.
If you need to write to the SVN repository, please visit https://kepler-
project.org/developers for instructions. You can use any SVN client to access the Kepler
repository.

To check out and build the Kepler source code, you will need to be running Java 1.6 or
later, Ant 1.7.1, and have installed an SVN client, v1.5. For development with Eclipse
these have been tested with Eclipse Ganymede and SVN 1.6, with Subclipse 1.4.7.

Downloading the Build
To download the latest version of the build from the repository, you will want to create a

new directory and then execute the svn checkout (co) command as in the following
example.

mkdir <modules.dir>

cd <modules.dir>

svn co https://code.kepler-project.org/kepler/trunk/modules/build-area
cd build-area

19

http://www.kepler-project.org/users/projects-using-kepler-1/kepler-core/
http://bugzilla.ecoinformatics.org/buglist.cgi?query_format=specific&bug_status=__open__&product=Kepler&content=&order=bugs.bug_severity&query_based_on=
http://lists.nceas.ucsb.edu/kepler/mailman/listinfo/kepler-dev
http://lists.nceas.ucsb.edu/kepler/mailman/listinfo/kepler-users
http://seek.ecoinformatics.org/Wiki.jsp?page=IRCChannels
https://kepler-project.org/developers
https://kepler-project.org/developers
http://www.onlamp.com/pub/a/onlamp/2005/03/10/svn_uis.html

Chapter 1

<modules.dir> is the name of the directory where the build will be stored, as well as the
modules you will be working on. A good name for this folder might be something like
kepler.modules.

Retrieving Kepler and Ptolemy

Now that the build system is downloaded you will use the build system to retrieve Kepler
and Ptolemy.

First, you need to decide whether you would like to work with the latest, likely unstable
development version of Kepler (referred to as the “trunk” of Kepler), or whether you
would like to work with an official stable release, such as 2.4.0.

To work from the trunk, issue the following command:

ant change-to —Dsuite=kepler

To retrieve Kepler version 2.4.0:

ant change-to —Dsuite=kepler-2.4.0

Some explanation of what the “ant change-to command is doing:

What is actually first retrieved is something known as a suite. This suite contains
information on where to retrieve the desired versions of Kepler and Ptolemy and that
information is used by the system to then retrieve the appropriate versions of Kepler and
Ptolemy. By default, when you type ant get -Dsuite=kepler, you are making a request
for a particular suite named kepler, which has information on how to download Kepler
and Ptolemy.

A final note, when you do get -Dsuite=<suite.name> you retrieve not only the suite, but
all the modules that are associated with the suite as well. If you want to retrieve a single
module instead of a suite of modules, you just type ant get -Dmodule=<module.name>
instead.

Note:
If you are behind a firewall and do not have access to port 22 and you are working off the
trunk, then the download of Ptolemy will fail when you execute the "ant change-to -

Dsuite=kepler" command. In this case, you must download Ptolemy manually using the
following command:

20

Chapter 1

svn co https://source.eecs.berkeley.edu/svn/chess/ptll/trunk <kepler.modules>/ptolemy

Running Kepler

Now that you have downloaded the Kepler Build System and have used it to retrieve the
Kepler version that interests you, you are ready to run. Just type:

ant run

Note that it would be possible for a new user to get started without having to enter a
command between get and run by chaining these commands in ant. So, for example, if
you wanted to download and run Kpler from the trunk all in one command, you could

type:

ant change-to —Dmodule=kepler run

1.5.1 Using Eclipse

See Kepler and Eclipse for more detailed instructions. However, in most cases, these
instructions should be adequate.

1. Type ant eclipse.

2. Open Eclipse in a new or existing workspace.

3. Choose File->Import... Under the General folder, choose Existing Projects
into Workspace. Click Next.

4. Click Browse right next to the Select root directory: field. Go to and select
the <module.dir> directory where you saved the build and downloaded your
modules. Click Choose.

5. The projects that were generated will be automatically detected by Eclipse.
Click on Finish.

6. KarDoclet.java uses doclet code from tools.jar. If you are using Java 1.6 on a
non-Mac OS X machine, you will need to add tools.jar to the list of external

jars:

Windows -> Preferences -> Java -> Installed JREs
Select the default JRE -> Edit -> Add External Jars -> [Path to
JDK]/lib/tools.jar

If you have the Subversive Eclipse plugin installed you can select the newly generated
projects, right click on them and choose "Share Projects” and follow the instructions in
the wizard to set up the connection to the Kepler repository (https://code.kepler-

21

https://kepler-project.org/developers/reference/kepler-and-eclipse
http://www.eclipse.org/subversive/
https://code.kepler-project.org/code/kepler/

Chapter 1

project.org/code/kepler/). Repeat the process for the ptolemy project using the Ptolemy
repository (svn://source.eecs.berkeley.edu/chess/ptll/).

If you have the Subversive plugin installed, see Updating the local copy of the Kepler
sources

To run kepler, create a new Java Application Run Configuration: with project: loader,
Main class: org.kepler.Kepler

These instructions and further reference detail, including how to run a workflow from the
command line, and setting system properties, and other details can be found at: Kepler
Build System Instructions and Overview.

1.5.2 Contributing to Kepler

In order to contribute directly to Kepler, one must use a named account to enable you to
make changes to the web site or the SVN repositories. In general, people with write
access should only make changes to modules with which they are directly involved or
that they have discussed with the relevant Infrastructure and Development Teams. Please
be sure you have contacted the appropriate Team(s) before you request an account.

To request a named account, send an email to pmc@ecoinformatics.org with your name,
association and a brief description of your project needs.

1.6 Reporting Bugs

The Kepler project uses Bugzilla for reporting bugs as well as for sharing future
development plans. Please register yourself by creating a new bugzilla account to
participate in future plans, bug reports, and updates. Note that you need to have an
ecoinformatics.org account to be able to register.

Bugzilla is one example of a class of programs called "Defect Tracking Systems", or,
more commonly, "Bug-Tracking Systems". Defect Tracking Systems allow individual or
groups of developers to keep track of outstanding bugs in their product effectively.

1.7 Further Reading

As part of the outreach effort for Kepler, we have produced a variety of documents and
publications. Publications of interest include:

o Scientific Workflow Management and the Kepler System, B. Ludascher, 1.
Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee,]. Tao, Y.
Zhao, Concurrency and Computation: Practice & Experience, 18(10), pp. 1039-
1065, 2006.

22

https://source.eecs.berkeley.edu/svn/chess/ptII/
https://source.eecs.berkeley.edu/svn/chess/ptII/
https://kepler-project.org/developers/reference/kepler-and-eclipse#10-updating-the-local
https://kepler-project.org/developers/reference/kepler-and-eclipse#10-updating-the-local
https://kepler-project.org/developers/teams/build/documentation/build-system-instructions#downloading-the-build
https://kepler-project.org/developers/teams/build/documentation/build-system-instructions#downloading-the-build
mailto:pmc@ecoinformatics.org
http://bugzilla.ecoinformatics.org/buglist.cgi?product=Kepler&bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED
http://bugzilla.ecoinformatics.org/createaccount.cgi
http://www.sdsc.edu/~ludaesch/Paper/kepler-swf.pdf

Chapter 1

Additional publications are listed on the Kepler web site at http://kepler-
project.org.

Independent publications of the collaborating projects can be reached at their main
websites: SEEK, SDMCenter-SPA, KBIS-SPA, Ptolemy, GEON, bioKepler, and
CAMERA.

23

http://seek.ecoinformatics.org/Wiki.jsp?page=SEEKDocuments
http://sdm.lbl.gov/sdmcenter/
http://kbi.sdsc.edu/
http://ptolemy.eecs.berkeley.edu/
http://www.geongrid.org/
http://www.biokepler.org/publications
http://camera.calit2.net/

2. Installing and Running Kepler

2.1 System Requirements

Recommended system requirements for Kepler:

300 MB of disk space

512 MB of RAM minimum, 1 GB or more recommended

2 GHz CPU minimum

Java 1.6

Network connection (optional). Although a connection is not required to run
Kepler, many workflows require a connection to access networked
resources.

e R software (optional). R is a language and environment for statistical
computing and graphics, and it is required for some common Kepler
functionality.

Java 1.6 is required and can be obtained online at:
http://www.oracle.com /technetwork/java/javase /downloads/index.html or from
your system administrator.

Kepler has many actors that utilize R, so installing R is recommended:
http://www.r-project.org/.

2.2 Installing Kepler

Kepler is an open-source, cross-platform software program that can run on
Windows, Macintosh, or Linux-based platforms. Instructions for each platform are
contained in the following sections.

2.2.1 Installing on Windows
Follow these steps to download and install Kepler for Windows.
Java 1.6 is required and can be obtained online at:

http://www.oracle.com/technetwork/java/javase/downloads/index.html or from
your system administrator.

24

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.r-project.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 2

Kepler has many actors that utilize R, so installing R is recommended:
http://www.r-project.org/.

1.

Click the following link: https://kepler-project.org/users/downloads and
select the Windows installer.

Save the install file to your computer.

Double-click the install file to open the install wizard. We recommend that
you quit all programs before continuing with the installation. You can cancel
the installation at any point via the Quit button in the lower right corner of
the installer. To proceed with the installation, click the Next button.

Click the Next button. An information screen containing notes about the
application appears. Click Next once you have read through the information
to select an installation path. By default, the software will be installed in
C:\Program Files\Kepler-x.y. The installer will create the target directory if it
does not yet exist. If the directory already exists, the installer will confirm the
location before possibly overwriting an existing version.

Choose the packs to install. Once you have selected an installation, click the
Next button.

The Kepler installer displays a status bar as the installation progresses. If
Kepler has previously been installed on the system, the installer will
overwrite any existing cache files.

Once the installation is complete, a confirmation Iﬂ(
screen opens. An uninstaller program is also created in
the installation location. A Kepler shortcut icon will Kepler

appear on your desktop.

2.2.3 Installing on Macintosh

The Mac installer will install the Kepler application on your system. Java is included
as part of the Mac OSX operating system, so it need not be installed.

Kepler has many actors that utilize R, so installing R is recommended:
http://www.r-project.org/.

Follow these steps to download and install Kepler for Macintosh systems:

http://www.r-project.org/
https://kepler-project.org/users/downloads
http://www.r-project.org/

Chapter 2

Click the following link: https://kepler-project.org/users/downloads and
select the Mac install file. Save the install file to your computer.

Double-click the install icon that appears on your desktop when the
extraction is complete.

Follow the steps presented in the install wizard to complete the Kepler
installation process.

A Kepler icon is created under /Applications/Kepler-x.y. The icon can be dragged
and dropped to the desktop or the dock if desired.

2.2.4 Installing on Linux

The Linux installer will install the Kepler application.

Java

1.6 is required and can be obtained online at:

http://www.oracle.com/technetwork/java/javase/downloads/index.html or from

your system administrator.

Kepler has many actors that utilize R, so installing R is recommended:
http://www.r-project.org/.

Follow these steps to download and install Kepler for Linux:

1.

2.
3.

Click the following link: https://kepler-project.org/users/downloads and

select the Linux install file.

Save the install file to your computer

Double-click the install file to open the install wizard. If double-clicking the
install file doesn’t work on your system, you may run the command java -
jar installer-file-name in a terminal to open the install wizard. We
recommend that you quit all programs before continuing with the
installation.

The Kepler installer displays a status bar as the installation progresses. If
Kepler has previously been installed on the system, the installer will
overwrite any existing cache files.

2.3 Starting Kepler

To start Kepler on a PC, double-click the Kepler shortcut icon on the desktop. Kepler
can also be started from the Start menu. Navigate to Start menu > All Programs, and
select "Kepler" to start the application. On a Mac, the Kepler icon is created under

https://kepler-project.org/users/downloads
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.r-project.org/
https://kepler-project.org/users/downloads

Chapter 2

Applications/Kepler-x.y. The icon can be dragged and dropped to the desktop or the
dock if desired.

To start Kepler on a Linux machine, use the following steps:

1. Open a shell window. On some Linux systems, a shell can be opened by right-
clicking anywhere on the desktop and selecting "Open Terminal". Speak to
your system administrator if you need information about your system.

2. Navigate to the directory in which Kepler is installed. To change the
directory, use the cd command (e.g., ed directory name) .

3. Type ./kepler.sh torun the application.

The main Kepler application window opens (Figure 2.1). From this window you can
access and run existing scientific workflows and/or create your own custom
scientific workflow. Each time you open an existing workflow or create a new
workflow, a new application window opens. Multiple windows allow you to work
on several workflows simultaneously and compare, copy, and paste components
between workflows.

To start Kepler from the command line (optionally loading a workflow), use the
following command:

kepler.sh [-nosplash] [workflow.xml | workflow.kar]
-nosplash start without showing splash screen.
On Windows, the executable is kepler.bat instead of kepler. sh.

To run a workflow XML from the command line:

kepler -runwf [-nogui | -redirectgui dir] [-nocache]
[-noilwc] [-paraml valuel ...] workflow.xml
-nogui run without GUI support.
-nocache run without kepler cache.
-noilwc run without incrementing LSIDs when the
workflow changes.
-redirectgui dir redirect the contents of GUI actors to

the specified directory.

To run a workflow KAR from the command line:

kepler.sh -runkar [-nogui | -redirectgui dir] [-force]
[-paraml valuel ...] workflow.kar

Chapter 2

-force attempt to run ignoring missing module
dependencies.

-nogui run without GUI support.

-redirectgui dir redirect the contents of GUI actors to

the specified directory.

You can specify the values of workflow parameters:

kepler.sh -runwf -x 4 -y "foo" workflow.xml

The above command runs 'workflow.xml', setting the parameters x = 4 and
y=”f00".

The full command-line usage for the Kepler executable can be found by running:

kepler.sh -h

2.4 The User Interface

Scientific workflows are edited and built in Kepler’s easily navigated, drag-and-drop
interface. The major sections of the Kepler application window (Figure 2.1) consist
of the following:

e Menu bar - provides access to all Kepler functions.

e Toolbar - provides access to the most commonly used Kepler functions.

e Components, Data Access, and Outline area - consists of a Components tab.
a Data tab, and an Outline tab. The Components tab, and the Data tab both
contain a search function and display the library of available components
and/or search results. The Outline tab displays an outline of components that
are in your current workflow.

o Workflow canvas - provides space for displaying and creating workflows.

e Navigation area - displays the full workflow. Click a section of the workflow
displayed in the Navigation area to select and display that section on the
Workflow canvas.

Each of these interface areas is described in more detail in the following sections.

Chapter 2

< Urinarmed M=%

Ele ke New Wokloy Too Wbl Mo e-d MenuBer 0 .

@@/ Q> 00/@| = m|uuc> [0 @ = Toobar .

. [Com;.mnerﬁ: Data Clu(li:_e_" ‘: [k
T

Rt P JHEtEn Lot n gy
Search Components “1°1"""% Component tab |
heccccsscccsmamsnn 4

= ESD L Dt e

-‘_’ Advanc... “ (" sources \

__All Ontologies and Folders L]

L4 G Components -!n
> D Projects - : B
> D Statistics . : -
L4 Actors

» Directors T H e
> Opendap

> ER \ Workflow canvas |

0 rezults found.

[w]
% 2

Figure 2.1: Empty Kepler window with major sections annotated.

2.4.1 Menu Bar

Running horizontally across the top of the Kepler application, the Menu bar contains
the seven Kepler menus: File, Edit, View, Workflow, Tools, Window, and Help.
Common menu item functions, such as Copy, Paste and Delete, are assigned
keyboard shortcuts, which can also be used to access the functionality. These
shortcuts, when relevant, appear to the right of each menu item.

The following sections describe each menu in greater detail.

2.4.1.1 File Menu

The File menu, which is the first menu in the Menu bar, contains commands for
handling files and for exiting the application: New Workflow, Open, Recent Files,
Close, Save, Save As, Export As, Print, and Exit.

Chapter 2

New Workflow: open a new application window. Select Blank, FSM, or Modal
Model. For more information about FSM and Modal Models, please see the Ptolemy
documentation.

Open...: open a workflow saved in a KAR (Kepler Archive format) or xml (.xml or
.moml) onto the Workflow canvas. Text-based files—text (.txt) or html ((html), for
example—will be opened in a viewing window.

Recent Files: list and open recent up to 10 workflows (KAR or xml format) that
were successfully opened before.

Save: save the workflow displayed on the Workflow canvas and any other related
files into a KAR (Kepler Archive format) file.

Save As: save the current workflow to a new KAR.

Export: save the current workflow as MOML (MOdeling Markup Language) XML, or
to a static image (GIF or PNG), or to an interactive HTML representation.

Print: print the graphical representation of the workflow. A page setup window is
used to set the paper size, source, margins, and orientation.

Close: close the current Workflow canvas.

Exit: exit the Kepler application. If a workflow is open, a dialog box will prompt a
user to save or discard changes. Users can also cancel and return to the main
application window.

2.4.1.2 Edit Menu

Edit menu items are primarily used to modify the Workflow canvas, allowing users
to cut, copy, and paste selected entities. In addition, Undo and Redo commands can
be used to modify the history of workflow changes.

Undo: (Ctrl+Z) Undo the most recent change. The "Undo" command can be performed

multiple times to undo the history of workflow changes. The size of the history buffer
is limited only by available RAM.

Redo: (Ctrl+Y) Redo the most recent change. The "Redo"” command can be
performed multiple times to redo the history of workflow changes.

Cut: (Ctrl+X) Cut the selected entities.
Copy: (Ctrl+C) Copy the selected entities to the clipboard.

Paste: (Ctrl+V) Paste the contents of the clipboard to the Workflow canvas.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf

Chapter 2

Delete: (Ctrl+X or Delete key) Delete the selected entities.

2.4.1.3 View Menu

View menu items control how the workflow appears on the Workflow canvas. Zoom
items are also available via the Toolbar.

Zoom Reset (Ctrl+Equals): Reset the view of the Workflow canvas to the default
settings.

Zoom In (Ctrl+Shift+Equals): Magnify the Workflow canvas for a more close-up
view. Kepler provides fixed levels of zoom.

Zoom Out (Ctrl+Minus): Pull back for a more distant view of the Workflow canvas.
Kepler provides fixed levels of zoom.

Zoom Fit (Ctrl+Shift+Minus): Display the current workflow in its entirety on the
Workflow canvas.

Automate Layout (Ctrl+T): Make a workflow more readable by automatically
configuring actor locations.

XML View: View the current workflow in XML mode. The workflow MoML XML will
be displayed in a viewing window.

2.4.1.4 Workflow

Workflow menu items are used to run and modify open workflows.

Runtime Window: The Runtime Window command opens a Run window, which
allows users to adjust workflow parameters and run, pause, resume, or stop
workflow execution. Workflow results are displayed in the window as well.

Add Relation: Add a Relation to the Workflow canvas. Relations, which might also
be called “connectors”, allow actors to "branch” output to multiple places. For more
information about Relations, see Section 3.2.7.

Add Port: Add a port to the Workflow canvas. Select Input, Output, Input/Output,
Input Multiport, Output Multiport, or Input/Output Multiport. For more information
about ports, see Section 3.2.4.

Chapter 2

2.4.1.5 Tools

The Tools menu contains a number of useful tools that are used to build and
troubleshoot workflows.

Animate at Runtime: Select this menu item to highlight the actor that is currently
processing as the workflow is run. The active actors will be denoted with a red
highlight. Note: This command is only relevant when an SDF Director is used.

Listen to Director: Open a viewing window that displays the Director's activity,
noting when each actor is preinitialized, initialized, prefired, iterated, and wrapped

up.

Create Composite Actor: Create a new composite actor on the Workflow canvas.
For more information about composite actors, please see Section 3.2.3.

Expression Evaluator: Open an Expression Evaluation window used to evaluate
any Kepler expression. For more information about the expression language, see the
Ptolemy documentation.

Instantiate Component: Open the designated component on the Workflow canvas.
Components can be identified via class name (e.g., ptolemy.actor.lib.Ramp) or via a
URL. Use this menu command to easily access components that are not included in
the Kepler component tree (e.g., the DDF Director or Ptolemy actors that are not
included in the default Kepler library).

Instantiate Attribute: Open the designated attribute on the Workflow canvas.
Attributes are identified by class name (e.g.
ptolemy.vergil kernel.attributes.EllipseAttribute).

Check System Settings: Open a window containing system settings.

Ecogrid Authentication: Provide log in credentials or log out after using
features in Kepler that require authentication (e.g., an authenticated data search for
the KNB (Earthgrid) or uploading actors to the Kepler actor library).

Preferences: Set various Kepler preferences, including local and remote directories
used to find components for the component library and services used for data
sources.

Text Editor: Open a simple text editor used to create, edit, and save text files.

Module Manager: View modules in the current suite, load and save module
configurations, view downloaded modules, and view available modules, and switch

http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf

Chapter 2

to a different module configuration. For more information on the module manager,
see Chapter 12.

JVM Memory Settings: Adjust how much memory is allocated to Kepler. If your

computer has available RAM, you may want to allocate more memory to Kepler by
increasing the Max Memory setting. This may improve performance.

2.4.1.6 Window

Access the Runtime Window via the menu option.

2.4.1.7 Help

The Help menu contains information about the current version of Kepler as well as
links to useful help documentation.

About: Open a window containing the current Kepler version number.
Kepler Documentation: An index of useful Kepler documents.

Modules Documentation: An index of documentation for the installed modules.

2.4.2 Toolbar

The Kepler Toolbar contains the most commonly used Kepler functions (Figure 2.2).
The Toolbar can be dragged and dropped to a convenient screen location. Closing
the Toolbar returns it to the default position beneath the Menu bar and above the
Workflow canvas.

The Toolbar consists of three main sections: View, Run, and Ports, discussed in more
detail below.

eela PO mphcne

Figure 2.2: The Kepler Toolbar.

Chapter 2

2.4.2.1 View Tools

View tools (Table 2.1) are used to zoom in, reset, fit, and zoom out of the workflow
on the Workflow canvas:

®

Zoom In: Magnify the Workflow canvas for a more close-up view. Kepler
provides fixed levels of zoom.

O

Zoom Reset: Reset the view of the Workflow canvas to the default
settings.

Zoom Fit: Display the current workflow in its entirety on the Workflow
canvas.

Q

Zoom Out: Pull back for a more distant view of the Workflow canvas.
Kepler provides fixed levels of zoom.

Table 2.1 View tools

2.4.2.2 Run Tools

Run tools (Table 2.2) are used to run, pause, and stop the workflow.

>

Run: Run the workflow. The button will have an orange highlight when
the workflow is running.

Pause: Pause the workflow. The button will have an orange highlight
when the workflow is paused. To resume the workflow, click the Run
button.

Stop: Stops workflow execution. The button will have an orange
highlight when the workflow is stopped To restart the workflow, click
the Run button.

Table 2.2: Run tools

2.4.2.3 Port Tools

Port tools (Table 2.3) are used to add Relations or Ports to workflows:

Chapter 2

Input Port: Add a single input port. A single input port can be
connected to only a single channel of data. Single ports are designated
with a dark triangle on the Workflow canvas.

Output Port: Add a single output port. A single output port can emit
only a single channel of data. Single ports are designated with a dark
triangle on the Workflow canvas

Input/Output Port: Add a bi-directional port, which can receive or send
a single channel of data.

Multiple Input Port: Add a multiple input port. A multiple input port

designated with a hollow triangle on the Workflow canvas.

Multiple Output Port: Add a multiple output port. A multiple output
port can emit multiple channels of data. Multiple ports are designated
with a hollow triangle on the Workflow canvas.

Multiple Input/Output Port: Add a multiple input/output port. A
multiple input/output port can receive or send multiple channels of
data. Multiple ports are designated with a hollow triangle on the
Workflow canvas.

Relation: Add a Relation. Relations “branch” a data flow so that data can
be sent to multiple places in the workflow.

¢> can be connected to multiple channels of data. Multiple ports are
4

Table 2.3: Port tools

2.4.3 Components, Data Access, and Outline Areas

The Components and Data Access area contains a library of workflow components
(e.g., directors and actors, under the Components tab) and a search mechanism for
locating those components, as well as data sets (under the Data tab). The Outline
area displays an outline tree of the components that are being used in the current
workflow. When the application is first opened, the Components tab is displayed.

2.4.3.1 Components Tab

Kepler comes standard with over 350 components that are stored on the local
machine and can be used to create an innumerable number of workflows with a
variety of analytic functions. The default set of Kepler processing components is
displayed under the Components tab in the Components and Data Access area. Users
can easily add new components or modify existing components as well. See Chapter
5 for more information about adding components to the local library.

Chapter 2

Components in Kepler are arranged in three high-level categorizations:
Components, Projects, and Statistics (Table 2.4). Any given component can be
classified in multiple categories, appearing in multiple places in the component tree.

Category Description

Components Contains a standard library of all components,
arranged by function.

Projects Contains a library of project-specific
components (e.g.,, SEEK or CIPRes)

Statistics Contains a library of components for use with

statistical analysis.

Table 2.4: Component Categories in Kepler

Browse for components by clicking through the component trees, or use the search
function at the top of the Components tab to find a specific component.

To search for components:

1. In the Components and Data Access area to the left of the Workflow canvas,
select the Components tab.

2. Type in the desired search string (e.g., “File Reader”).

3. Click the Search button. The search results are displayed in the Components
and Data Access area, replacing the default list of components. You may
notice multiple instances of the same component. Because components are
arranged by category, the same component may appear in multiple places in
the search results.

4. To use one or more components in a workflow, simply drag the desired
components to the Workflow canvas.

5. To clear the search results and re-display the complete component library,
click the Cancel button.

NOTE: If you know the name of a component and its location in the Component
library, you can navigate to it directly, and then drag it to the Workflow canvas.

2.4.3.2 Data Tab

Via its search capabilities, Kepler provides access to data stored remotely on the
EarthGrid, which contains a wide collection of ecological and geographical
resources. Select the Data Tab (Figure 2.3) in the Components and Data Access area
to find and retrieve remote data sets.

http://seek.ecoinformatics.org/
http://www.phylo.org/

Chapter 2

000 Unnamed1
IRV I T IR IE YIRS
| Components ~ Data | Outline | N

Search Data

Datos Meteorologicos

[Q atos meteorologicos (search)

,
Sources Cancel r
S\

Datos NEeorologicos

-2

>

1 results returned.

Datos eorologicos

4

A

Figure 2.3: The Data Tab. A search has been performed to locate "Datos Meteorologicos"”, a data set stored
on the EarthGrid.

To search for data on the EarthGrid through Kepler:

1.
2.

In the Components and Data Access area, select the Data tab.

Click the Sources button and select the services to search (deselecting
unnecessary sources decreases search time).

Type in the desired search string (e.g., Datos Meteorologicos). Make sure that
the search string is spelled correctly. (You can also enter just part of the
entire string - e.g, ‘Datos’). If the search requires authentication (e.g.,
searches on the KNB Authenticated Query source), use the Tools > Ecogrid
Authentication menu option to specify credentials.

Click the Search button. The search may take several moments. When the
search is complete, a list of search results (i.e., Data actors) will be displayed
in the Components and Data Access area.

To use one or more data actors in a workflow, simply drag the desired actors
to the Workflow canvas.

When a data set is dragged from the Data tab to the Workflow canvas, Kepler
downloads the data from the remote source and stores it in the Kepler cache where
it can be accessed by the workflow or easily previewed. The cache (i.e., the

Chapter 2

'.kepler' directory) is in the user's HOME directory, which is the default working
directory whenever one first opens a Command Window (on Windows platforms)
or a terminal window (on Mac or Linux). On Mac and Linux systems, the command
'cd ~' will change directories to the home directory. Once data is stored in the
cache, Kepler will automatically access the local copy rather than re-download the
data. If you would prefer to re-download the data, and you are using an
EMLZDataset actor, select the Check for latest version parameter to
override the default behavior. See Chapter 6 for more information.

Information about downloaded data can be revealed in three ways: (1) on the
Workflow canvas, roll over the Data actor’s output ports to reveal a tool tip
containing the name and type of data or (2) right-click the Data actor and select Get
Metadata to open a window that contains more information about the data set
(Figure 2.4) or (3) preview the data set by right-clicking the data actor and selecting
Preview from the drop-down menu (Figure 2.6).

K| file:/C: /Docume nts%20and%20Settings/K. . .W/urn.lsid.localhost.c96a7 dff.0.0. htm! [f=1<

File W%iew Tools Help

-~
Data Set Description

ldentifier: tao.1.1
Catalog System: knb
Title: Datos Meteorologicos
Individual: Mr. Rodrigo Torrens
Auth System: knb
COirder: denyFirst
ALLOW: [read] public
Individual: Mr. Rodrigo Torrens
Mame: Datos Meteorologicos
Description: Dtos Estacion meteorologica La Hechicera para e? 2001
Object Mame: sample.dat
Size: 188860 bytes
Character
Encoding: Rl

Mumber of Header 1

Lines:

Record Delimiter: \n
Text Format: E‘Lanxgitmhym Record column

; RS Field

Simple Delimited: Delimeter:
Case Sensitive? no
Mumber Of Records: 100

- Type Missing
Attribute Column . Measurement Measurement Accuracy Accuracy
Name Label Definition of Type B Value Report Assessment CoverageMethod
Value Code
DATE DATE Pateof — gping datetine Format MMDDIYY
collection Precisiom >

Figure 2.4: Metadata for the Datos Meteorologicos data set.

Chapter 2

Datos eorologicos
=2

Configure Actor ¥E

Customize Name

Configure Ports

Configure Units

Open Actor EL

Documentation OO Datos Meteorologicos Preview

L DATE |TIME |T_AIR [RH |DEW |BARD |WD |WS RAIN [SOL |5OL..

isten to Actor Ol/.. 00000 15 99 1459534 99 08 0 0 O

Suggest Mo1,... 01:00 13.4 99 12.8953.8 100 1.9 0 0 0

Semantic Type Annotation... [01l/... 02:00 13.4 99 12.8 954 114 1.2 0 o 120]

Save Archive (KAR)... 01/.. 03:00 12.4 99 12.3 9543 114 2.5 0 0 ol

Upload to Repository 01/.. 04:00 11.7 99 11.7 9545 96 3.1 0 o 120]

View LSID 0l/.. 05:00 11.4 99 11.2 954.7 85 2.6 0 0 0

. 01/.. 06:00 11.5 99 11.7 954.8 114 2 0 0 0

01y, 07:00 115 99 1179548 &8 2.8 0 0 0

Appearance *\0l/.. 08:00 12.2 99 12.3 9549 88 2.5 0 202 75..
0l1/.. 09:00 17.4 92 15.6 953.7 336 0.1 0 442 1,0
01/.. 10:00 20.1 83 16.7 952.6 322 0 0 716 1,8
01/.. 11:00 23.3 71 17.8951.7 289 0.4 0 892 2.4.
01/.. 12:00 23.1 74 17.8951.2 193 0.3 0 522 2.8..
01/.. 13:00 23.5 72 17.8950.7 42 0.1 0 964 3,2
0l1/.. 14:00 23.5 85 20.6 950.3 117 0.1 0 952 3.4
0l1/.. 15:00 23.1 92 21.7 950.3 93 1 0 876 3,2..
0l/.. 16:00 20 99 19.5950.6 156 0.6 0 194 2.6...
0l/.. 17:00 185 99 17.8951.8 34 1.2 0 96 530..
0l1/.. 18:00 17.5 99 16.7 952.3 157 0.1 0 38271.
0l1/.. 19:00 16.2 99 15.6 952.8 277 0.6 0 0 18....
0l/.. 20:00 15.9 99 15.6 953.1 277 0.1 0]]
0l/.. 21:00 156 99 159533 196 0.1 0]]
01/.. 22:00 15.2 99 14.5953.4 264 0 0]]
01/... 23:00 14.7 99 13.9953.6 244 0.3 0] 04
0l1/.. 00:00 14.2 99 13.4 953.7 105 0.9 0 0 0,

Figure 2.5: Previewing a data set.

Downloaded data can be output in a variety of formats. See Chapter 6 for more
information.

The EarthGrid currently interfaces with KNB Metacat database. The Knowledge
Network for Biocomplexity (KNB) is a national network intended to facilitate
ecological and environmental research on biocomplexity. It enables the efficient
discovery, access, interpretation, integration, and analysis of many kinds of
ecological data from a highly distributed set of field stations, laboratories, research
sites, and individual researchers.

To configure a data search to search a subset of the EarthGrid, click the Sources
button from the Data tab. Select the sources to be searched and the type of
documents to be retrieved (Figure 2.6) Each service requires that at least one
corresponding document type is selected (e.g, the KNB Metacat EcoGrid
Querylnterface service requires that either Ecological Metadata Language 2.0.0,
2.0.1, or 2.1.0 is selected). If you try to 'deselect’ all of the relevant document types,
the service is automatically deselected as well. The document types (e.g., Ecological

® Knowledge Network for Biocomplexity (KNB) website, http://knb.ecoinformatics.org

javascript:ol('http://knb.ecoinformatics.org');

Chapter 2

Metadata Language 2.0.0) refer to the metadata specification used by the data sets.
For more information about metadata, please see Chapter 6.

Preferences

[Components Data |

Service Name Document Type

E| Ecological Metadata Language 2.0.0
E‘| KNE Metacat Query Interface Ei Ecological Metadata Language 2.0.1
E| Ecological Metadata Language 2.1.0
E‘ Ecological Metadata Language 2.0.0
I!__-ﬂ KNE Metacat Authenticated Query Interface E| Ecological Metadata Language 2.0.1

E| Ecological Metadata Language 2.1.0

(Refresh) [] Keep existing sources

lf Ok \I [_-CanceI:l

Figure 2.6: Configuring the data sources and types.

2.4.4 Workflow Canvas

Scientific workflows are opened, created, and modified on the Workflow canvas.
Components are easily dragged and dropped from the Component and Data Access
area to the desired canvas location, and can then be dragged around on the canvas.
Each component is represented by an icon, which makes identifying the components
simple. Connections between the components (i.e., channels) are also represented
visually so that the flow of data and processing is clear.

Each time you open an existing workflow or create a new workflow, a new
application window opens. Multiple windows allow you to work on several
workflows simultaneously and compare, copy, and paste components between
Workflow canvases.

2.4.4.1 Director Right-Click Menu

The director right-click menu contains several menu items that are specific to the
director: Configure Director and Documentation.

Configure Director: Configure the director parameters. This dialog can also be
opened by double-clicking the director on the Workflow canvas.

Chapter 2

Documentation: Display, customize, or remove director documentation.
Customized documentation will replace existing documentation.

2.4.4.2 Actor Right-Click Menu

The actor right-click menu contains several menu items that are specific to that
actor: Configure Actor, Customize Name, Configure Ports, Configure Units, Open
Actor, Get Metadata, Documentation, Listen to Actor, Suggest, Semantic Type
Annotation, Save in Library..., Save Archive (KAR)..., and Upload to Repository.

Configure Actor (Ctrl+E): Configure the actor parameters. This dialog can also be
opened by double-clicking the actor on the Workflow canvas.

Customize Name: Customize the label that identifies the actor on the Workflow
canvas.

Configure Ports: Add, remove, hide, show, rename, and customize input and output
ports.

Configure Units: Specify unit constraints for an actor (e.g., $plus=S$minus, which
states that an actor's plus and minus ports must have the same units. For more
information, please see the Ptolemy documentation,
http://ptolemy.berkeley.edu/ptolemyii/ptillatest/ptll/ptolemy/data/unit/demo/S
taticUnits/NonAppletStaticUnits.htm

Open Actor (Ctrl+L): Display the actor's Java source code in a viewing window.
Get Metadata: Display a data set's metadata. (For data actors only.)

Documentation: Display, customize, or remove director documentation.
Customized documentation will replace existing documentation on the local copy of
the actor in the current Kepler version. Note that customized documentation will
not be "transferred" if a new version of Kepler is installed.

Listen to Actor: Open a window that displays various actor events during
execution.

Suggest: Request that the semantic system suggest compatible input, output, or
similar components.

Semantic Type Annotation: Semantic annotations conceptually describe an actor
and/or its "data schema." Annotations provide the means for ontology-based
discovery and integration. Annotations are stored within the component metadata.

http://ptolemy.berkeley.edu/ptolemyii/ptIIlatest/ptII/ptolemy/data/unit/demo/StaticUnits/NonAppletStaticUnits.htm
http://ptolemy.berkeley.edu/ptolemyii/ptIIlatest/ptII/ptolemy/data/unit/demo/StaticUnits/NonAppletStaticUnits.htm

Chapter 2

Each port can be annotated with multiple classes from multiple ontologies.
Annotations can be used to find similar components, and to check that workflows
are semantically and structurally well typed.

Save Archive (KAR): Save an archived version of the selected component to a
selected location on the local machine.

Upload to Repository: Upload a component to the Kepler repository, which is a
centralized server where workflow components can be searched and re-used.
Uploaded components should have a unique name. To change the name of a
component, right-click it and select Customize Name from the drop-down menu.
Users will be prompted for a Knowledge Network for Biocomplexity (KNB) user
name and password; if you do not have a KNB user account, click the Login
Anonymously button to upload components without a user name or password.
Alternatively, you can register for a KNB account on the KNB homepage
(knb.ecoinformatics.org).

View LSID: View the unique life sciences identifier for this actor.

Preview: Display a data table. This option is only used by data actors (e.g,
EMLZ2Dataset) to display data sets represented by Meta data. For more information
about using data sets in Kepler, please see Chapter 6 of the User Manual.

2.4.5 Navigation Area

The navigation area contains a view of the entire workflow (even if only a portion of
the workflow is displayed on the Workflow canvas). Use the red guidelines to
navigate a large workflow and select a portion of the workflow to display (Figure

2.7)

http://knb.ecoinformatics.org/

Chapter 2

S — M=%

Ele Edt Yew Wokflow Jook Window Hep

@/@[&[[p|00]/@]= || >5[¢ (

pnumber_Of_Nerations: 10 4
NOTE: Each lteration requires 10-20 seconds on a typical deskiop PC.
Sp _Name: "Mephitis_mephitis”

INumBest: 3

me of Species Right-click the actor and select 'Open Actor' 1 see the
pecies_Name

| - DataPoints
DataDirectory+"/digi_data_mephits dat”

Output fie path and name
£ DataDiroctory"+Spacies_Name+*_Merg...

This Ecological Niche Model (ENM)
species (Mephitis mephitis, a stripe
and environmental data (IPCC clim
workflow uses the GARP (Genetic .
generate predictions, which are th
predictions are used to project mb;
>

. (2
Figure 2.7: The Navigation are

Section 3

3. Scientific Workflows

Kepler simplifies the effort required to analyze and model scientific data by using a
visual representation of these processes. These representations, or “scientific
workflows,” display the flow of data among discrete analysis and modeling
components (Figure 3.1).

K‘
File Tools Help
5.5
SDF Director
Mean
:K!
File Tools Help
Constant Summary Statistics Standard Deviation 3.0276503540975
L (1,2,3.4,56,7,8,9,10)
Variance K ..Variance Q@

File Tools Help
9. 1666666666667

Figure 3.1: A simple scientific workflow developed in Kepler

Kepler allows scientists to create their own executable scientific workflows by
simply dragging and dropping components onto a workflow creation area and
connecting the components to construct a specific data flow, creating a visual model
of the analytical portion of their research. Kepler represents the overall workflow
visually so that it is easy to understand how data flow from one component to
another. The resulting workflow can be saved in a text format, emailed to
colleagues, and/or published for sharing with colleagues worldwide.

Kepler users with little background in computer science can create workflows with
standard components, or modify existing workflows to suit their needs. Quantitative
analysts can use the visual interface to create and share R and other statistical
analyses. Users need not know how to program in R in order to take advantage of its
powerful analytical features; pre-programmed Kepler components can simply be
dragged into a visually represented workflow. Even advanced users will find that

44

Section 3

Kepler offers many advantages, particularly when it comes to presenting complex
programs and analyses in a comprehensible and easily shared way.

Kepler includes distributed computing technologies that allow scientists to share
their data and workflows with other scientists and to use data and analytical
workflows from others around the world. Kepler also provides access to a
continually expanding, geographically distributed set of data repositories,
computing resources, and workflow libraries (e.g., ecological data from field
stations, specimen data from museum collections, data from the geosciences, etc.).

3.1 What is a Scientific Workflow?

Scientific workflows are a flexible tool for accessing scientific data (streaming
sensor data, medical and satellite images, simulation output, observational data,
etc.) and executing complex analysis on the retrieved data.

Each workflow consists of analytical steps that may involve database access and
querying, data analysis and mining, and intensive computations performed on high
performance cluster computers. Each workflow step is represented by an “actor,” a
processing component that can be dragged and dropped into a workflow via
Kepler’s visual interface. Connected actors (and a few other components that we’ll
discuss in later sections) form a workflow, allowing scientists to inspect and display
data on the fly as it is computed, make parameter changes as necessary, and re-run
and reproduce experimental results.10

Workflows can represent theoretical models or observational analyses; they can be
simple and linear, or complex and non-linear. One feature of some scientific
workflow systems is that they can be nested (i.e., hierarchical), meaning that a
workflow can contain “sub-workflows” that perform embedded tasks. A nested
workflow (known in Kepler as a composite actor) is a re-usable component that
performs a potentially complex task.

Scientific workflows in Kepler provide access to the benefits of today’s grid
technologies (providing access to distributed resources such as data and
computational services), while hiding the underlying complexity of these
technologies. Kepler automates low-level data processing tasks so that scientists can
focus instead on the scientific questions of interest.

Workflows also provide the following:

e documentation of all aspects of an analysis
e visual representation of analytical steps

10 Ludascher, B., 1. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao.
2005. Scientific Workflow Management and the Kepler System, DOI: 10.1002/cpe.994

45

Section 3

e ability to work across multiple operating systems
e reproducibility of a given project with little effort
e reuse of part or all of a workflow in a different project

To date, most scientific workflows have involved a variety of software programs and
sophisticated programming languages. Traditionally, scientists have used STELLA or
Simulink to model systems graphically, and R or MATLAB to perform statistical
analyses. Some users perform calculations in Excel, which is user-friendly, but offers
no record of what steps have been executed. Kepler combines the advantages of all
of these programs, permitting users to model, analyze, and display data in one easy-
to-use interface.

Kepler builds upon the open-source Ptolemy II visual modeling system
(http://ptolemy.eecs.berkeley.edu/ptolemyll/), creating a single work environment
for scientists. The result is a user-friendly program that allows scientists to create
their own scientific workflows without having to integrate several different
software programs or enlist the assistance of computer programmers.

A number of ready-to-use components come standard with Kepler, including
generic mathematical, statistical, and signal processing components and
components for data input, manipulation, and display. R- or MATLAB-based
statistical analysis, image processing, and GIS functionality are available through
direct links to these external packages. You can also create new components or
wrap existing components from other programs (e.g.,, C programs) for use within
Kepler.

3.2 Components of a Workflow

Scientific workflows consist of customizable components—directors, actors, and
parameters—as well as relations and ports, which facilitate communication
between the components. Figure 3.2 displays a Kepler workflow with the main
workflow components identified.

The workflow in Figure 3.2, the LotkaVolterraPredatorPrey workflow, is used to

model the relative populations of a predator and its prey over time. For a more
detailed look at how it works, please see Section 4.2.3.

46

http://ptolemy.eecs.berkeley.edu/ptolemyII/

Section 3

K file: 1C :Vlkepll'er--f .0.0beta i/&émos/gett. . .arte«i)diiotka‘l&lierrabredatorl"tey.xmi E]@
File Edit View Workflow Tools Window Help

(Components | Data Outline] CT Director [
Search Components
Q \ (search) TimedPlotter
(Advanc..) (Sources
All Ontologies and Folders 23] XYPlotter
» [Components ik || v | PSS
» [Projects Y o o e
» [statistics i < i R
> Actors L
> Directors
> Opendap : v
> EIR = / VY Integrate n1
d II
92 + b'ni'n2 \ Integrate n2
K [N
He Tooks Specidl Hep
TimedPlotter T 02 LotkaVolterraPredatorPrey XYPlotter - EL_E J
wF 1 | 1 ' Fle Took Specd Help
0 results found. = XYPlotter EJ!JB_]EJ
30 o
25

execution finished.

L

Figure 3.2: Main window of Kepler with some of the major workflow components highlighted. The
windows on the bottom right are output windows, created by the workflow to display result graphs.

0 1 2 3 4 5 6 7 8 9 10

3.2.1 Directors

Kepler uses a director/actor metaphor to visually represent the various components
of a workflow. A director controls (or directs) the execution of a workflow, just as a
film director oversees a cast and crew. The actors take their execution instructions
from the director. In other words, actors specify what processing occurs while the
director specifies when it occurs.

Every workflow must have a director that controls the execution of the workflow
using a particular model of computation. For example, workflow execution can be
synchronous, with processing occurring one component at a time in a pre-calculated
sequence (SDF Director). Alternatively, workflow components can execute in

47

Section 3

parallel, with one or more components running simultaneously (which might be the

case with a PN Director).

A small set of commonly used directors come packaged with Kepler (Table 3.1), but
more are available in the underlying Ptolemy II software that can be accessed as
needed. For a more detailed discussion of workflow models of computation, please
see Section 5.2 Choosing a Director, or refer to the Ptolemy Il documentation.

SDF Director

0

The SDF Director is often used to oversee fairly
simple, sequential workflows. Types of workflows
that run well under an SDF Director include
processing and reformatting data, converting one
data type to another, and reading and plotting a
series of data points.

PN Director

4

The PN Director is often used for managing
workflows that require parallel processing on
distributed computing systems.

Continuous Director

The Continuous Director is for the “continuous time”
domain, a timed domain that supports continuous-
time signals, discrete-event signals, and mixtures of
the two. There is a global notion of time that all the
actors are aware of.

DE Director

The DE Director is often used for modeling time-
oriented systems: queuing systems, communication
networks, and occurrence rates or wait times.

DDF Director

The DDF Director is often used for workflows that
use looping or branching or other control structures,
but that do not require parallel processing (in which
case a PN Director should be used).

Table 3.1: Directors that come in the standard Kepler component library.

3.2.2 Actors

48

Section 3

Actors are the basic building blocks of workflows. Kepler comes packaged with
more than 530 actors, each ready to be used in new and/or existing scientific
workflows. Each actor is designed to perform a specific task: from generating
summary statistics, to mapping data points to a projection of North America, to
translating files from one format to another. Each actor performs a "step" in a
workflow. For example, one actor might be used to read or import data for use in a
workflow, another to transform that data into a format that can be analyzed,
another to analyze or graph the data, and another to output the data to a file or the
screen. Data passes between these actors via channels, which are represented by
solid lines on the Workflow canvas.

The actors are listed in the Components tab of the Kepler interface. Dragging and
dropping an actor will move it to the Workflow canvas, where it can be incorporated
into a workflow. However, simply dragging an actor onto the Workflow canvas will,
by itself, do nothing. Though each actor knows "what" processing should occur, it
does not know "when" to perform that process (or "iterate"). Actors need to be
directed (i.e., they require a Director component) in order to perform.

Separating the "what" from the "when" in actor performance allows actors to act
and interact in many ways. For example, an actor can be instructed to iterate once,
or ten times, or infinitely with a simple Director setting. Similarly, an actor can be
instructed to work in parallel with other actors—which is useful when workflows
require parallel processing on distributed computing systems—or at discrete times
along a time line, or in a number of other ways dictated by the Director. See Section
5.2 for more information about each Director and how to choose the right director
for each workflow.

New actors can be downloaded from the Kepler repository, or created by the user
and added to the Kepler application. User-created actors can also be uploaded to the
Kepler repository, where they can be shared with other workflow developers. The
Kepler repository is covered in more detail in Section 4.5.3. For more information
about creating and using new actors, see the appendix on Creating New Actors.

Kepler actors come in two forms: "individual" actors and "composite" ones.
Composite actors are collections or sets of individual actors bundled together to
perform more complex operations. Composite actors can be used in workflows,
essentially acting as a nested or sub-workflow (Figure 3.3). An entire workflow can
be represented as a composite actor and included as a component within an
encapsulating workflow. Composite actors are designated with a double rectangle
actor icon.

49

Section 3

Input Actor Nested Workflow Output Actor

(e.g., data) (i.e., composite actor) (e.g., display)

=

Figure 3.3: Representation of a nested workflow. "B" is an example of a composite actor, which contains
three nested actors (D, E, and F).

Both individual and composite actors are identified by an icon and a label, which are
rendered on the Workflow canvas. In addition, most actors have one or more ports,
which are used either to input values (a dataset to analyze, for example) or to output
results. Most actors have parameters, as well, which are customizable settings. To
view and/or edit an actor's parameters, double-click the actor icon on the Workflow
canvas.

Figure 3.4 shows a Round actor as it appears on the Workflow canvas. The Round
actor has two ports, an input and an output port, as well as one parameter
(function). Double-click the actor to view and/or edit the function parameter.

i Actor Name E

B e

Figure 3.4: The Round actor as it appears on the Workflow canvas

Actor Name: The actor name can be customized to specifically identify an actor's
function in a workflow. For example, a Display actor can be renamed "Display
Statistics" or "Display Errors” to better identify its purpose in a specific workflow.
To edit an actor name, right-click the actor icon from the Workflow canvas and

50

Section 3

select Customize Name from the menu. The actor name is displayed above the actor
icon unless the "Show name" option in the Customize Name menu is deselected.

Icon: Each actor is identified by an icon that describes the actor on the Workflow
canvas. Icons help identify the function of each actor. For a complete list of actor
icons and a description of Kepler actor symbology, see Section 5.3.1 Actor Icon
Families.

Ports: Most actors have one or more ports, depicted with either a white (multiport)
or black (single port) triangle at the perimeter of the actor icon. Data flows into and
out of the actor via these ports. To add, remove, or rename actor ports, right-click
the actor icon and select Configure Ports from the menu. Checking "Show Name"
displays the port name on the Workflow canvas.

Data is passed to actor ports in the form of tokens. A token can be thought of as a
container of some kind of data. Each token has a type ("integer" or "matrix," for
example), and this type is usually declared by the port that accepts or broadcasts the
data. Mouse over an actor port on the Workflow canvas to display a tooltip that
contains the port name as well as the type of data it produces or accepts. If the actor
does not receive data tokens of the specified type, an error will be generated.

Parameters: Double-click an actor icon on the Workflow canvas to reveal the
actor's parameters, or settings. Parameters are used to give actors context-specific
instructions, such as the location of a source file to read, a particular algorithm to
perform, and the format in which to output results.

Each time an actor is dragged onto the Workflow canvas from the Components tab, a
new "instance" of that actor is created. Dragging and dropping an ImageJ actor onto
the canvas three times will produce three instances of the Image/ actor, named
Image], Image]2, and Image]3. Editing the parameters of any one of these instances
does not affect the values of the other instances, nor does it affect the original actor
stored in Kepler. In other words, every time an actor is instantiated, it will have the
same settings as the original actor (or "class"”, in Java). The name of each actor class
can be viewed by right-clicking an actor and selecting Documentation from the
drop-down menu. The class name is displayed in parenthesis beside the actor name,
e.g., ImageJActor (Instance of util.ImageJActor).

Documentation: All Kepler actors have documentation, which can be opened via
the actor's right-click menu. To read the actor documentation, drag an actor onto
the Workflow canvas, right-click the actor icon, and select Documentation > Display
from the pop-up menu (Figure 3.5). Documentation can also be accessed from the
Components tab: simply right click an actor and select View Documentation. The
documentation describes each actor and its function, the type of values the actor
inputs and outputs, and the purpose of each actor parameter.

o1

Section 3

Garp Prediction

“M
Configure Actor HE

Customize Name
Configure Ports
Configure Units

Open Actor AL

Listen to Actor
Suggest

Save Archive (KAR).,,
Upload to Repository
View LSID

Preview

Appearance

Documentation * - Display

Semantic Type Annotation..,

GarpPrediction

(org.ecolnformatics. seek.garp.GarpPrediction)

Waummmmm:mmmmwmwmuum

wpacies locations, GARP is an acronym for Germtc Algorghm for
Rube Set Production. WWM(WWMW\W‘ The version in Kegler is Dased
on Deskiop GARS”, HEpDaww Memagpae cepiiesiiopgen! Tha GarpPreckcsion actir predicts

Customize
Remove Customization

Parameters

rdeSetFlenameParameter This 1 the the name 0f e The Contaning e RuleSet data. & ususly e U of 8 GapAOtrem scior

data 0n & tpebsl or rout RuseSet the

8000¢) andl the Inget set of envircnmentsl layers hmm:-omauﬂn-mmm
(*txf). The outpets are ether on * a3c grid e or o * bap tie. Ether can be displayed 83 o btmapped
mage pueel values (e). coior mapped when
chgplayed)

This Is & JN-based actor. R requires the folowing nu: I0NP. 20 windows: garp. i, ibexpat
MacOSY, - currenty net avadatie for the Mac (316/2005)

2]

foye

BUPUASTIParameler
OUCEMPParamelsr

Input Ports

rieSetFlenitoe
layerselfionime

QLI SCN

_amaen

This is the fie

oach pecel

Tris i the fie rame 10 be used 10¢ the cutpat ASCE grid the
This i the fie name 10 be used for the output EMP raster fie.

Tris is the the rme 01 2 fhe Containng the RseSet date, | b ususly B Cutsut f 0 GaepAlgortem st
Tris i the the rame Of B * did te used 10 Susmarize the et Of spotal dats Mles wih enarcrmentsl dals 1o

each peeel

Attar Chad Berkcioy, Dan Hggns, WOEAL, U Carts
Barbwrs

Trés is the tie rame 10 be LUsed 1or the Cutput ASCE grid 1
P . SR P

e * ddd fle uzed to 2URMMIZE the tet of spatel data fles wih envircnmentsl data for

Figure 3.5: Actor documentation

The actor documentation can also be customized by right-clicking the actor and

selecting Documentation > Customize from the drop-down menu. An editing
window opens (Figure 3.6).

52

Section 3

Editing locumentation for Binary File Reader
:—’,/ Binary File Reader
Author(sh: efrat jaeger| ersion:

Descripkion:

<p>The BinarvyFileReader reads a local £il |
i = path or URL and outputs an array of byt
User Level Documentation: e=. The actor can read both binary and 43

CITI file formats.< p>

Ports
FileorURLPork: An inpuk port that accepts the File name or URL of a file to be read. wh
outpuk: An outpuk pork that broadecasts an array of bytes representing the con
endOfFile; Aan outpuk port that indicates whether or not the end of the file has bes
trigger: A multipork that has no declared type (in other words, the port can acc
Properties
fileOrURL: The file name or URL of the File ko be read. See FileParameter For more

Figure 3.6 Editing actor documentation.

Documentation content can include links to external web pages (which will open in
a Kepler viewing window) and HTML formatting (, <tt>, , etc). XML-reserved
characters (e.g, '>', '&', ', etc) must be escaped. The most common reserved
characters and their entity replacement are listed in Table 3.2

XML-reserved Character Replace with:
& &
< <
> >
" "
' &apos,

Table 3.2: Common XML-reserved characters.

To delete the content of a documentation screen, select Documentation > Remove
Customization. Note that this action cannot be undone with the "Undo" Menu bar item.

Actors make it easy to "read" the architecture of a workflow. When an existing
workflow is opened (or a new workflow is created), each actor appears on the
Workflow canvas, allowing users to easily follow the workings of the process that
the workflow performs.

Users can delve even deeper into the details of workflow processing by opening the
actors. To open an actor, right-click the actor icon from the Workflow canvas and
select Open Actor. For most individual actors, Kepler will display the Java source
code (Figure 3.7). The Java source is the code that creates the actor; some actors,
such as the RExpression actor, contain code (e.g., R-scripts), but this type of code is
accessed via actor parameters. In some cases, like the EMLZDataset actor, a
customized display of information about the actor appears when the actor is

53

Section 3

opened. If the actor is a composite actor, a new application window opens to display
the sub-workflow (Figure 3.8).

Fpae file N B ops s 208 Vet Mapher bulldbepler fart Autilbiage Metor pava -

i Took ek

s s 4

Jocks o

O O

QQE PO)=

Yo wbteme e ba

Components Data

Outline

Search Components
Q

(“searcn)

Y

{ Advanc..) (Sources

All Ontologies and Folders 2]
» &) Components
» B Projects

» [staustics

> L Actors

» Directors

> Opendap

> R

Figure 3.7: Viewing the source code for an individual actor. To open the source code in a viewing window,
right-click an actor and select Open Actor from the drop-down menu.

54

Section 3

Fofle N Wrogram 20F ke Mephet /demos 6 WebServicesAndDataTransformation xml - X |
Fle It Yew Woklow JTooks Window Mebp
D) > ¥ =) NG AN
Qe QPO mpdi-d
'fConTm;:ls“ Data Outline !
Search Components T L L e e W)

Q Search LEFaQliPHOSmel 0

([Advanc (sources)

All Ontologies and Folders 9] > _{_}

» &) Components L~) O

» [Projects

» B swavstics

> L Actors

> Directors
Opendap

» QR

B

Figure 3.8: Opening a composite actor. To view the nested (i.e., "sub-workflow") contained in a composite
actor, right-click the actor and select Open Actor from the drop-down menu.

Actors are written in Java, which is an object-oriented programming language
created by Sun Microsystems. (Note that existing code written in languages other
than Java can be included in Kepler by writing a Java "wrapper" around the code). A
technical specification of actor structure is beyond the scope of this manual, which
instead focuses on how actors are used and appear in the user interface. For more
technical information about actor code and coding practices, please see the Ptolemy
documentation as well as the Kepler developer documentation.

3.2.3 Composite Actors

Composite actors are collections or sets of actors bundled together to perform more
complex operations. Composite actors can be used in workflows, essentially acting
as a nested or sub-workflow. An entire workflow can be represented as a composite
actor and included as a component within an encapsulating workflow. In more
complex workflows, it is possible to have different directors at different levels. A
sub-workflow that contains its own director is called an opaque composite.
Transparent composites "inherit" their director from the containing workflow (i.e.,
the sub-workflow does not contain its own director).

55

http://www.sun.com/java/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
https://kepler-project.org/developers

Section 3

Opaque Composite actors are sub-workflows that contain their own director.
Opaque composite actors can be nested inside workflows that use a different type of
director, thereby combining different models of computation in one workflow;
however, not all directors are compatible. An opaque composite actor that uses a PN
director cannot be nested inside a workflow governed by an SDF director, for
example. For an in-depth discussion of directors that can be compatibly nested, see
Composing Models of Computation in Kepler/Ptolemy.

3.2.4 Ports

Each actor in a workflow can contain one or more ports used to consume or produce
data and communicate with other actors in the workflow. Actors are connected in a
workflow via their ports. The link that represents data flow between one actor port
and another actor port is called a channel. Ports are categorized into three types:

e input port - for data consumed by the actor;
e output port - for data produced by the actor; and
e input/output port - for data both consumed and produced by the actor.

Each port is configured to be either a “singular” or “multiple” port. A single input
port can be connected to only a single channel, whereas a multiple input port can be
connected to multiple channels. As depicted in Figure 3.9, each single input port is
shown as black triangle, and each multiple port is shown as white triangle. A third
port color is grey, which means the port is port-parameter (please see Section
3.2.4.3: Port-Parameter). The "width" of the port describes how many channels of
data it accepts; the width of a single port can be 0 (unconnected) or 1, while the
width of a multiple port can be greater than 1. For multiple ports, the first channel is
number 0, the second 1, etc. See Section 3.2.5 for more information about channels.

Several different kinds of ports appear in Kepler: actor ports, external ports, and port-

parameters. Each is discussed in more detail in the following sections.

3.2.4.1 Actor Ports

Actor ports, also called coupled ports, are coupled with an actor. Actor ports appear
as light or dark triangles on the actor icons when actors are displayed on the
Workflow canvas (Figure 3.9), and can be customized by right-clicking an actor and
selecting Customize Ports from the drop-down menu.

56

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/ptII/doc/domainCompatibility.htm

Section 3

Bernoulli
Multiple Port

.................. e

Figure 3.9: Single and multiple ports of the Bernoulli actor. A single port can be connected to a single
channel of data, while a multiple port can be connected to multiple channels.

To customize an actor's ports—either by changing the existing ports or adding new
ones--right-click the actor and select Configure Ports from the drop-down menu
(Figure 3.10)

L S

<» Configure ports for Convert URL To Image E]@
Mame Input | Qu... | Mulki... Type Direction Showe Mame Hide Inits

input]] DEFALLT IF] o

oukpuk [] [] DEFALLT]]

(oo) [oo |

Figure 3.10: Configuring the ports of the ConvertURLTo Image actor. Fields that cannot be edited are
noted with a pink highlight.

To add a new port, click the Add button and then customize the new port. Every port
must have a name, which can be customized by double-clicking the field in the Name
column and typing a name. In addition to selecting the kind of port (input, output or
input/output), users can assign a data type by clicking the Type field and selecting a
type from the drop-down menu. The port Direction field determines how the port
will be displayed on the Workflow canvas ("North" places the port at the top of the
actor, "South” on the bottom, etc). Kepler will display the port name on the
Workflow canvas if "Show Name" is selected, and will hide the port (i.e., not show it
on the Workflow canvas) if "Hide" is selected. Adding ports is essential to some
actors (like the Expression actor). In other cases, adding ports is relatively
meaningless since the actor is not designed to use any information on the added
port.

Units (seconds, meters, etc) can be selected by clicking the Units field and selecting a
measurement from the drop-down menu. Assigning units helps insure the integrity
of workflow processing (e.g., that meters are not added to miles per second, etc). If
units are assigned, the Unit Constraints Solver (accessed by right-clicking the

S7

Section 3

Workflow canvas and selecting Unit Constraints Solver from the drop-down menu)
can be used to discover, analyze, and, in some cases, fix, unit inconsistencies that
exist in a model.

Each port can also be assigned a data type (e.g., double or array; See Section 3.2.6 for
more information about data types). The type of the port restricts the type of the
token that can pass through it. These types can be declared via the Type drop-down
menu, or left undeclared, in which case the application will resolve the type when
the workflow is executed. In many cases there is no need to enter port type
information.

3.2.4.1 External Port

An external port is often used to pass data from a sub-workflow to a containing workflow
(Figure 3.11). External ports can be connected by channels to other external ports or to
ports of individual actors.

SDF Director

..................

® DirName: DataDirectory+"/mephitis"

Directory Maker

.................

L T2, trigger
b

Figure 3.11: Example of an external output port (“trigger") and an input port-parameter ("DirName"). This
simple workflow is a sub-workflow of the GARP_SingleSpecies_BestRuleSet-1VV.xml workflow. The sub-
workflow passes a trigger to the containing workflow via its external trigger port. The DirName port-
parameter is discussed in greater detail in Section 3.2.4.3.

Like actor ports, external ports can be singular or multiple. They can be added to a

workflow with the Toolbar buttons. The ports are represented on the Workflow canvas
with the same icon that appears on the Toolbar buttons (Table 3.3)

58

Section 3

Icons for external ports

» Single input port. ® Multiple Input Port

- Single output port. t‘r:l Multiple Output Port

Single Input/Output Multiple
* Port ¢> Input/Output Port

Table 3.3: Icons that represent the various types of external ports on the Workflow canvas.

3.2.4.3 Port-Parameter

A port-parameter functions as both a port and a parameter that is used to configure the
operation of an actor (for more information about parameters, see Section 3.2.8). Port-
parameters allow users to specify a "default” value for a parameter (e.g., iterations=4 or
name="mouse"). If the actor receives a value via the coupled port, that value will replace
the value specified by the parameter component of the port-parameter.

Port-parameters can be added to workflows from the Components tab by searching for
"PortParameter" and dragging the component onto the Workflow canvas.

To customize a port-parameter on the Workflow canvas, right-click the port-
parameter and select Customize Name from the drop-down menu. A dialog window
provides a field for specifying a name (Figure 3.12). Choose a descriptive name and
click Commit.

B - Edit Parameter DirMame

DirMName:

r Cancel \l (OK jl

1

Figure 3.12: Customizing the name of the port-parameter used in the GARP_SingleSpecies_BestRuleSet-
IV.xml workflow displayed in Figure 3.11.

Once the port-parameter has been named, specify a parameter value by double-clicking
the port-parameter (Figure 3.13).

59

Section 3

Edit parameters for Directory Maker

L@nn

Directory name: |

class: org.resurgence.actor.DirectoryMaker

semanticType00: urn:lsid:localhost:onto:1:1#FileSystemActor

semanticTypell: urn:lsid:localhost:onto:2:1#FileSystem

If Cancel \ lr Help \ fr Preferences \ (ResloreDefaul(sﬁ Ir Remove \ (Add \ (Commit)

Figure 3.13: Customizing the parameter value of a port-parameter.

Note: The parameter value in Figure 3.13, DataDirectory+"/mephitis", in an
example of an expression, which is written in the Kepler expression language, and is the
value of the port-parameter used in the sub-workflow displayed in Figure 3.11.
DataDirectory IS a parameter defined by the containing workflow, and
"/mephitis™ is a string that will be concatenated to form the name of the new
directory created by the DirectoryMaker actor. Parameter values can also be constant
values, such as integers or strings.

Once the port-parameter has been defined, actors can reference it. Figure 3.14
displays the DirectoryMaker actor's parameters. Note that the value of the
"Directory name" parameter is set to $DirName. The "$" syntax is used to tell Kepler
to substitute the value of a string parameter for the parameter name (i.e., DirName
is the parameter name in this example, NOT the name of a directory). The value of
DirName is: DataDirectory+”/mephitis”. The actor will use this value unless
the port-parameter receives an alternate string from the containing workflow. In
the GARP workflow, the port-parameter is configured to receive
DataDirectory+"/"+SpeciesName (where SpeciesName is defined
elsewhere in the containing workflow), and this value would replace the default
Directory name parameter.

|' 8,00 : Edit parameters for Directory Maker

Directory name:

class: org.resurgence.actor.DirectoryMaker

semanticType00: urn:lsid:localhost:onto: 1: 1#FileSystemActor

semanticTypell: urn:lsid:localhost:onte:2: 1#FileSystem

(Cancel) € Help) (preferences) [Restore Defaults) [Remove) € Add) (Commit

e

Ffé'hﬂ_re 3.14: Ref'eFé'naﬁé'E;'p;'or't‘—'f)grar;éte_r. The $DirName syntax is used to refer to the value of the
DirName port-parameter defined on the Workflow canvas.

3.2.5 Channels and Tokens

Channels are used to pass data from one port to another. Each channel can transport a
single stream of data. Data in Kepler is encapsulated and passed between workflow
components as tokens. Each token has an assigned data type (int, object, or matrix, for
example).

60

Section 3

Channels are represented as solid lines that "connect” the actors on the Workflow canvas.
To create a channel, left-click an actor's input or output port and drag the cursor to the
destination actor's input/output port. Until the channel is properly connected to both the
source and destination ports, the channel will appear as a thin black line. Once the
channel is connected, it will become a thick black line (Figure 3.15). To disconnect or
re-route one end of a channel, first select the channel by left-clicking somewhere along
the black line, then click-and-drag the appropriate end point to the desired location on the
Workflow canvas.

The simple addition/subtraction workflow displayed in Figure 3.15 contains two
channels of data that are input to an Add or Subtract actor via its multiport. The first
channel is number 0, the second number 1 (a third would be number 2, etc.).

SDF Director

Connected Channel |
(thick black line) E

E Unconnected Channel |

nstantt.”
Constant (thin black line) |

===~ Monitor Value

Constant2

>

Figure 3.15: Channels on the workflow canvas. When a channel is properly connected, it will be
represented by a thick black line. Channels that are not properly connected appear as thin black lines.

3.2.6 Data Types

Data tokens each have a structural type. "Hello", a string of alpha-numeric
characters, is encapsulated as a string token, while 3, an integer, is encapsulated as
an integer token. String and integer are both structural types.

A data token can only be passed to a port that accepts its structural type. An array of
strings cannot be passed to a port that accepts only integers, and attempting to do
so will generate a type error. Port data types are defined by the actor, and can be
configured by right-clicking an actor and selecting Configure Ports from the drop-
down menu. That menu contains common Kepler data types, defined in Table 3.4.
Note that this list is not exhaustive. For example, users can edit the results from the
drop-down type menu to convert ‘ArrayType[int]’ to ‘ArrayType[double]’

Structural Data Types

Boolean The Boolean token can have one of two values: true or
false (represented by 1 or 0, respectively).

61

Section 3

Complex

A complex number consists of a real and imaginary
part. In Kepler, the imaginary component of a complex
number is designated with aniorj (e.g, 6+7i).

Double

A double represents a floating point number (e.g., 1.345)
with "double precision”. This data type can accurately
represent about twice as many significant digits as a single
precision type, but also requires more memory.

Fixed point

A fixed-point number is a number in which the position of
the decimal point is constant. U.S. currency can be
represented by a fixed-point number that has two digits to
the right of the decimal point, for example. Fixed point
numbers in Kepler are represented in the following way:
fix(value, integerBits, fractionBits).

General

The general data type is the most inclusive of the types. A
port assigned type "general” can accept data of all types
(array, string, matrix, etc.).

Int

The integer token ("int™) represents numerical values that
have no decimal points (e.g., 11 or -17)

Long

Integers followed by an "I" or "L" are of type long. The
long data type can represent large integers. Float and
double data types can also be used: these data types have
greater storage capacity than long data types, but less
precision/significant digits.

Matrix

A matrix contains boolean, complex, double, fixedpoint,
int, or long data that can be referenced by row and
column. Matrices in Kepler are specified with brackets.
Commas separate row elements and semicolons separate
rows. For example, a 1x3 matrix would be represented as
[1,2,3]. A 2x2 matrix would be represented by [1,2;3,4].
To create multidimensional matrices, use arrays of arrays
of arrays.

Object

An object token is a data container for an arbitrary Java
object (most complex 'things' in Java are objects). These
tokens can be used to pass complex Java objects around a
Kepler workflow. Object tokens are primarily used for
custom workflows with custom actors. Non-programmers
will probably not find them very useful.

Scalar

The term scalar designates a value that consists only of
magnitude (as opposed to a vector, which consists of both
a magnitude and direction). In Kepler, scalar values may
have any scalar data type: double, int, long, etc.

String

A sequence of characters specified within quotation
marks. Anything between " is interpreted as a string.

Unknown

An unknown data type places no additional type
constraints on the port. All the structured types are
less than the type "general" and greater than

62

Section 3

"unknown."
Unsigned byte An unsigned byte represents an integer that does not
include data to specify whether it is positive or negative.
xml token Extensible Markup Language (XML) tokens use markup

language to describe the structure of the data. For more
information about XML, see the World Wide Web
Consortium.

arrayType(int) An array is a data structure consisting of elements that can
be identified by a key (or index). The first item in an array
has a key of 0, the second 1, etc. Arrays in Kepler are
denoted with curly braces, eg. {1,2,3,45}
arrayType (int) specifies an array of integers. Note
that any type in the drop-down menu can be edited so that
different array types can be specified.

arrayType(int,5) An array is a data structure consisting of elements that can
be identified by a key (or index). arrayType (int, 5)
specifies an array of integers with 5 elements in the array
(i.e., the length of the array is specified as part of the type.
Note that any type in the drop-down menu can be edited
so that different array types and lengths can be specified.

[Double] A matrix with elements of type double.

{x=double, y=double} A record token consists of named elements and their
values. In Kepler, records are specified between curly
braces. For example, {a=1, b=2} is a record with two
elements, named a and b, with values 1 and 2,
respectively. In this case, both values are of type double.

Table 3.4: Common data types in Kepler.

Kepler will attempt to automatically convert data into the appropriate structure. For
example, if an integer and a double are added, Kepler will determine that the result will
be type double (which is the "greater” of the two data types). For a detailed discussion
about type conversion and resolution see the Ptolemy documentation.

3.2.7 Relations

Relations allow workflows to “branch” a data flow. Branched data can be sent to
multiple places in the workflow. For example, a user might wish to direct the output
of an operational actor to another operational actor for further processing, and to a
display actor to display the data at that specific reference point. By placing a
Relation in the output data channel (Figure 3.16), the user can direct the information
to both places simultaneously.

63

http://www.w3.org/
http://www.w3.org/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Section 3

SDF Director

Gene Accession Number

[AAD45112 XML Entry Display

WebkBenice

Sequence Getter Using XPath Sequence Display

Result

Sequenc !

Errors Sink HTML Generator Using XSLT HTML Display

1 XML tnpu friaL o

[ptolemy.actor.lib.gui.Display |

Figure 3.16: A relation is used to branch the Result output of the WebService actor to an XML Entry
Display actor and two additional processing components: Sequence Getter Using XPath and HTML
Generator Using XSLT.

To add a relation to a workflow, use the Add Relation button on the Toolbar (’
). The relation will be placed in the center of the Workflow canvas. Drag and drop it
to the required location. When connecting a relation to actors, it is often easiest to
begin drawing the channel at the input or output port of the actor and connecting
the channel to the relation.

3.2.8 Parameters

Parameters are configurable values that can be attached to a workflow (model
parameters) or to individual directors or actors (coupled parameters). Actor
parameters specify everything from the directory into which the actor should save
its output, to the name applied to the output file, to the number of items the actor
should process. Director parameters control the number of workflow iterations and
the relevant criteria for each iteration. Model parameters define values that can be
adjusted in the Runtime window. More information about each type of parameter is
contained in the following sections.

3.2.8.1 Actor Parameters

Actor parameters (or "coupled parameters") are parameters that belong to an actor
or director. To view or edit these parameters, right-click the actor or director on the
Workflow canvas and select Configure Actor from the drop-down menu, or simply
double-click the component. This opens dialog box containing all of the relevant

64

Section 3

parameters. Figure 3.17 shows a dialog box that contains the parameters of the
Display actor.

Edit parameters for Display
_‘{/ rowsDisplayed: 10

columnsDisplayed: 40
suppressBlankLines: O
title:
class: ptolemy.actor.lib.gui.Display
semanticType00: urnilsid:localhost:onto:1: 1#TextualOutputactor
semanticTypell: urn:lsid:localhost:onto: 2: 1 # TextualOutput

[Cormrnit] [Add] [Remove] [Restore Defaults] [Preferences] [Help] [Cancel]

Figure 3.17: Parameters of the Display actor.

To edit the parameter values, simply change the fields and click the Commit button.
In most cases, values must be modified before the workflow begins running; in other
words, changes to parameter values will not go into effect if the workflow is already
running.

Parameters can be added, removed, or restored to their default values via the
corresponding buttons. Click Preferences to customize the type of field used to edit
the parameters: text, fixed, line, or check box (Figure 3.18).

- ~

Edit parameters for Bernoulli

\?/ seed: E___f-_if'_e_____l---b oL

resetOnEachRuny=--~---~-------,]

| CheckBox ~*™ D
trueProbability: '--s-ssssseeeea 0.5
|
Text ™

class: ! Fixed '---# ptolemy.actor.lib.Bernoulli

semanticType0: ~ T urn:lsid:localhost:onto: 1: 1 #RandomMNumberMathOperationActor

semanticTypell: urn:lsid:localhost:onto: 2: 1 #RandomMumberOperation
[Comnit] [Add] [Remove] [Restore Defaults] [Preferences] [Help] [Cancel]

Figure 3.18: The Preferences button is used to manage the types of fields used to edit parameter values.
The pictured parameters are for the Bernoulli actor, which is used to generate and output a sequence of
random Boolean values.

65

Section 3

3.2.8.2 Model Parameters

Model parameters appear directly on the workflow canvas and are used to specify values
for anything from a color, to a file name, to a required version number (Figure 3.19).
Model parameters can be added to a workflow from the Components tab.

To customize the value of a model parameter, double-click the parameter on the
Workflow canvas, type a value into the editable field, and click OK. Alternatively, model
parameters can be adjusted in the Runtime window, which is accessed via the Workflow
menu.

Continuous Director

or: 2
Timed Plotter _ W

O _ - o 0.1

r—] Model Parameters
i Q==L ~--seb 0.1
N

\Aod: 0.1

XY Plotter

dnl/dt Integrate n
[- r’nl - a*nl*n2
L dn2/dt Integrator

-d*n2 + b*nl*n2

~

>—

Figure 3.19: Model parameters, which is set on the Workflow canvas. Model parameters can be referenced
by any actor in the workflow and its sub-workflows.

Section 3

Parameter values can be referenced by any actor in the workflow or its sub-workflows.
Actors reference model parameters by name. For example, the ClimateFileProcessor
actor in Figure 3.20 references the OutputDir model parameter in its

baseOutputFileName parameter.

SDEDirector o o 1utDir: "C:IPCCLayers/”

" Edit parameters for ClimateFileProcessor ‘

\? / outputType: average| / .:
cutputPerind; e v
baseOutputFileName: ccmm-

[commt || Add | [7Remavt | [Restore Defauts | erfuonccs | [Help | ﬁ(ancci |

ClimateFileProcessor

Figure 3.20: Referencing a model parameter.
3.2.8.3 Port-Parameters

A port-parameter functions as both a port and a parameter that is used to configure the
operation of an actor. For more information about Port-Parameters, see Section 3.2.4.3.

67

Section 4

4. Working with Existing Scientific Workflows

Kepler comes with a set of documented workflows contained in the "demos"
directory and its subdirectories. The workflows in the "demos/getting-started"
directory are useful examples that can help users familiarize themselves with the
application, and many of the workflows contained in that directory are described in
more detail later in this chapter.

In this chapter, we also cover how to open workflows created and shared by
colleagues, and how to modify and save existing workflows.

4.1 Opening Workflows

Kepler can open both local workflows and workflows stored on a remote Web
server. In both cases, the open workflow will display on the Workflow canvas,
where it can be run and/or modified.

4.1.1 Opening Local Workflows

The workflows shipped with Kepler are installed into the
"KeplerData/workflows/module/Module-2.X.Y/demos/getting-started/" directory
(where Module is the name of each Kepler module and X.Y is the current version of
Kepler, and KeplerData/ is inside your Documents and Settings directory on
Windows, and your home directory on Linux and Mac). (In general, workflows can
be stored and opened from any local directory.)

To open an existing local XML (MoML) workflow:

1. From the Menu bar, select File, then Open.... A standard file dialog box will
appear.

2. If the file dialog box does not open to the “KeplerData” directory (the place
where user workflows and data are stored), then navigate to the
“KeplerData” directory (in your home directory).

3. Double-click a workflow file to open it (or single-click to select the file and
then click the Open button). The workflow will appear on the Workflow
canvas.

For example, to open the Lotka-Volterra workflow, the classic predator-prey model
that is shipped with the Kepler application:

68

Section 4

1. From the Menu bar, select File, then Open....
2. Navigate to

2.X.Y/demos/getting-started/" directory and locate the file named “02-
LotkaVolterraPredatorPrey.xml” (Figure 4.1).

the

® Kepler File Edit View Workflow Tools Window Help

“KeplerData/workflows/module/outreach-

aan

Unnamed1

MYV T L AL JC Il =S

- Components Data QOutline B

Search Components ————————————

f’Q 1‘l[Search)

(Advanced...) (Sources) "’ Cancel

[all Ontologies and Folders

ar

4 Components
> Projects

» (3 statistics

» [Actors

b || Dataturbine
» || Directors

» [/ Opendap

>

IR

0 results found.

r'ed -

Waorkflow

["] getting-started &
| Date Modified |

[oo-statisticalsummary.xmi Thursday, September 23, 2010 11:59 AM 1
EI 01-SimpleAddition.xml Thursday, September 23, 2010 11:59 AM
i 02-LotkaVolterraPredatorPrey.xml . Sep
[7] 03-ImageDisplay.xmi Thursday, September 23, 2010 11:59 AM
EI 04-HelloWorld.xml Thursday, September 23, 2010 11:59 AM
EI 05-LinearRegression.xml Thursday, September 23, 2010 11:59 AM
|:| 06-WebServicesAndDataTransformat... Thursday, September 23, 2010 11:59 AM
[7] 07-CommandLine_1.xm Thursday, September 23, 2010 11:59 AM
|;| 08-CommandLine_2.xml Thursday, September 23, 2010 11:59 AM
o)
= A
@ -

File Format: | .xml, .moml, XML, .MO... H

(e Copen)

A'

2]

Figure 4.1: Navigating to the Lotka-Volterra workflow. The workflow is in the “demos/getting-started"

directory.

3. Double-click the “02-LotkaVolterraPredatorPrey.xml” file.

Volterra workflow appears on the Workflow canvas (Figure 4.2).

The Lotka-

69

Section 4

file:/Users/crawl/KeplerData/workflow. . .arted/02-LotkaVolterraPredatorPrey.xml
@@ (b 11[@] == 5[] ¢
]

I Components Data Outline ! 3 Workflow

Search Components Continuous Director

a Y[search)
(e)

(Advanced) (" Sources) (* Cancel er 2
\Advanced..) { Sources)

Timed Plotter
| All Ontologies and Folders i ea: 0.1

> E Components)
4 Projects eb:0.1
> Statistics .
. XY Plotter ed: 0.1
Actors
Dataone
Dataturbine

Directors

1 Irods

“IJob

| MyWorkflows ‘
| Opendap
I Qutreach

- _dnl/dt Integrate n
8 . 1 r*nl - a*nl*n2

YYYVYVYVYVYYVYYY

L _dn2/dt Integrator
I -d*n2 + b*nl*n2

r

P W,
0 results found. This model shows the solution to the classic Lotka-Volterra
::'D E predator prey dynamics model. It uses the Continuous Time

domain to solve two coupled differential equations, one that models
the predator population and one that models the prey

population. The results are plotted as they are calculated showing
both population change and a phase diagram of the dynamics.

Rich Williams, 2003, NCEAS i
Ir e —— Kl

Figure 4.2: The Lotka-Volterra workflow in the Kepler interface.

Since Kepler 2.4, the demo workflows in each Kepler module can be found in the
Kepler component tree. The ‘Demos’ folder in component tree lists all demo
workflows for each module. Users can search/navigate Kepler component tree to
find interested workflows and open them by double-clicking them.

4.2 Running Workflows

Workflows can be run in one of two ways: via the Run button in the Toolbar, or via
the Workflow menu's Runtime Window menu item.

4.2.1 Runtime Window

70

Section 4

Selecting the Runtime Window menu item (Figure 4.4) opens a handy window that
can be used to start, pause, resume, and stop workflow execution. The window also
displays all workflow and director parameters so that they can be viewed and/or
edited. Workflow output is displayed in the window once the workflow has
executed.

To run a workflow using the Runtime Window:

1. Open the desired workflow.

2. From the Menu bar, select Workflow, then Runtime Window. A Runtime
window opens. Workflow and director parameters are displayed on the left
side of the window, where they can be adjusted as needed.

Click the Go button to start running the workflow.
4. The workflow will execute. During workflow execution, you may select the

Pause, Resume, or Stop buttons.

w

Workflow Tools Windc

Add Relation

B Bpher 1 O Ohate Ndomotigetl a0 &0 1 Lotha¥omer | ve SabieProy ront ~1okd
Pl wew wpifor Tooh Wdow b

Sear, C v
2earc Ran
[[7 XYPlotter >

(wwhw pow o

Q00O

Figure 4.3: Opening the Runtime Window to run a workflow and/or adjust workflow parameters. In this
example, the Runtime window is displaying the Lotka-Volterra workflow.

To run the Lotka-Volterra workflow via the Runtime Window:
1. Open the workflow file named “02-LotkaVolterraPredatorPrey” from the

“demos/getting-started/” directory.

71

Section 4

2. From the Menu bar, select Runtime Window from the Workflow menu. A
Runtime Window opens.

w

Click the Go button in the Runtime Window.

4. The Lotka-Volterra workflow will execute with the default parameters and
produce two graphs, which are displayed in the window. The graph labeled
TimedPlotter depicts the interaction of predator and prey over time (i.e., the
cyclical changes of the predator and prey populations over time predicted by
the model). The graph labeled XYPlotter depicts a phase portrait of the
population cycle (i.e., the predator population against the prey population).
Together these graphs show how the predator and prey populations are
linked: as prey increases, the number of predators increase. (Figure 4.5)

maxstepsize:
maxzlkerations:
errorTolerance:
valueResolution:
synchronizeToRealTime:
ODESolver:!
breakpointODESolver:
rundheadLength:

class:

semanticType000:

excecution finished.

1.0
20
le-o
le-B

O

"ExplicitRK4550lver"

"herivat iveResolver"”
0.1
ptolemy.domains. ct.kernel. CTMixedSignalDirector

urn:lsid: Iocalhost: onko: 1:1#Direckor

K/ file:/C: /kepler 20070702/demos/getting-started/02-LotkaVolterraPredatorPrey. xml E]@
File WView ‘Workflow Tools Window Help
=1 1%

‘ Go | [Pause I [Resume I [Stop] XYPlotter JJJJ
Model parameters: 40T I

r z 34

ai o1 al

b: 0.1

d: 0.1 251
Directot parameters: anr

timeResalutian: 1E-10 18T

startTime: 0.0 100

stopTime: 1000

(rliteepiEe 0.1 0 1 2 3 4 5 6 7 8 s 10

minStepSize: 1e-5 @E@E

TimedPlotter

)

oo

041

0z

0.3

0.4 0.a 0.6 0r 0.g 049 1.0

L)

Figure 4.4: The Runtime Window displaying the results output by the Lotka-Volterra workflow.

4.2.2 Run Button

The Run button in the Toolbar runs a workflow with a single button click. Workflow
and director parameters are not exposed for editing as they are in the Runtime
Window.

To run a workflow using the Run Toolbar button:
1. Open the desired workflow.

72

2.
3.

Section 4

From the Toolbar, select the Run button. (B>)
The workflow will execute and produce the specified output.

To run the Lotka-Volterra workflow via the Run button

5.

6.
7.

Open the workflow file named “02-LotkaVolterraPredatorPrey” from the
“demos/getting-started/” directory.

On the Toolbar, click the Run button.

The Lotka-Volterra workflow will execute with the default parameters and
produce two graphs. The graph labeled TimedPlotter depicts the interaction
of predator and prey over time (i.e., the cyclical changes of the predator and
prey populations over time predicted by the model). The graph labeled
XYPlotter depicts a phase portrait of the population cycle (i.e., the predator
population against the prey population). Together these graphs show how
the predator and prey populations are linked: as prey increases, the number
of predators increase. (Figure 4.6)

73

Section 4

'Lli‘ .02-I.otkaVoiterwPredatorPtele‘um@iotter

/oS

File Tools Special Help

TimedPlotter EIE@EI
4t :
35
30
25 i
20f I | | | | i IR -
R
151 |
101 l |
5- -
o] =
00 01 02 03 04 05 06 07 08 08 10 B =%
xﬂ)3
XYPlotter =)) 2
st
35t
0l
25t
20}
151
10 L
L= L) g 10

Figure 4.5: Graphs output by the Lotka-Volterra workflow run via the Run button on the Toolbar.

4.2.3 Running Workflows with Adjusted Parameters

Workflow parameters are used to specify anything from the name of a data
directory used by a workflow, to the relationship between items processed by the
workflow, to the name applied to a workflow's output file. Adjusting these
parameters can have a significant effect on the output.

Parameters can be adjusted in one of several ways. Double-click any workflow
parameters that appear on the Workflow canvas (e.g., r, a, b, or d in Figure 4.7) to
edit the parameter value. Director and actor parameters can be modified by double-
clicking the component and editing the values in the dialog window. If the workflow
is run via the Workflow menu's Runtime Window menu item, both workflow and

74

Section 4

director parameters are exposed and can be edited in the Runtime Window
interface before the workflow is run.

In this section, we will step through the process of adjusting the parameters of the

Lotka-Volterra workflow to show how adjusting parameters affects workflow
output.

Continuous Director

er. 2
Timed Plotter

ea: 0.1

eb: 0.1

XY Plotter ed 0.1

-

dnl/dt Integrate n
[| r*nl - a*nl*n2
L dn2/dt Integrator
-d*n2 + b*nl*n2
~
J
4

Figure 4.6: The Lotka-Volterra workflow.

The Lotka-Volterra model was developed independently by Lotka (1925)!! and
Volterra (1926)!2 and is made up of two differential equations. One equation

11 | otka, Alfred J (1925). Elements of physical biology. Baltimore: Williams & Williams Co.

75

Section 4

describes how the prey population changes (dn1/dt = r*nl - a*n1*n2), and the other
describes how the predator population changes (dn2/dt = -d*n2 + b*n1*n2).

The Lotka-Volterra model is based on certain assumptions:
e the prey has unlimited resources;
e the prey's only threat is the predator;
e the predator is a specialist (i.e., the predator's only food supply is the prey);
and
e the predator's growth depends on the prey it catches

The Lotka-Volterra model is represented in Kepler as a scientific workflow that
contains:

e six actors - two plotters, two equations, and two integral functions;

e one director; and

e four workflow parameters (Table 4.1).

NOTE: The director of the Lotka-Volterra model has several configurable
parameters as do the two plotter actors.

The critical assumptions above provide the basis for the workflow parameters. The
workflow parameters and their defaults are as follows:

Parameter | Default | Description

Value
r 2 The intrinsic rate of growth of prey in the
absence of predation
a 0.1 Capture efficiency of a predator or death rate of
prey due to predation
b 0.1 Proportion of consumed prey biomass

converted into predator biomass (i.e., efficiency
of turning prey into new predators)

d 0.1 Death rate of the predator
Table 4.1: Description of the default parameters for the Lotka-Volterra workflow

In the differential equations used in the workflow, (dn1/dt = r*n1 - a*n1*n2) and
(dn2/dt = -d*n2 + b*n1*n2), the variable nl1 represents prey density, and the
variable n2 represents predator density.

When changing parameters in a workflow, the assumptions of the model must be
kept in mind. For example, if creating a Lotka-Volterra model with rabbits as prey
and foxes as predators, the following assumptions can be made with regard to how
the rabbit population changes in response to fox population behavior:

12 \olterra, Vito (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118.
558-560.

76

Section 4

The rabbit population grows exponentially unless it is controlled by a
predator;

Rabbit mortality is determined by fox predation;

Foxes eat rabbits at a rate proportional to the number of encounters;

The fox population growth rate is determined by the number of rabbits they
eat and their efficiency of converting the eaten rabbits into new baby foxes;
and

Fox mortality is determined by natural processes.

If you think of each run of the model in terms of the rates at which these processes
would occur, then you can think of changing the parameters in terms of percent of
change over time.

To run the Lotka-Volterra workflow with adjusted parameters:

1. Open the workflow file named “02-LotkaVolterraPredatorPrey” from the
“demos/getting-started” directory
2. From the Menu bar, select Runtime Window from the Workflow menu. The
Runtime window opens. Notice there are two sets of parameters - one for the
workflow and one for the director. For more detail about the director
parameters, right-click the director and select Documentation > Display from
the drop-down menu. In this example, you will make adjustments to both
workflow and director parameters.
3. Adjust the workflow parameters as suggested in Table 4.2.
Parameter New value Description
r 0.04 The intrinsic rate of growth of prey in the
absence of predation
a 0.0005 Capture efficiency of a predator or death
rate of prey due to predation
b 0.1 Proportion of consumed prey biomass
converted into predator biomass (i.e.,
efficiency of turning prey into new
predators)
d 0.2 Death rate of the predator

Table 4.2: Description of the suggested parameters for the Lotka-Volterra workflow taken from
http://www.stolaf.edu/people/mckelvey/envision.dir/lotka-volt.html

4. Adjust the value of the stopTime director parameter to 300.

5.

In the Runtime window, click the Go button.

The Lotka-Volterra workflow will execute with the adjusted parameters and
produce two graphs: 1) the TimedPlotter graph and 2) the XYPlotter graph. Note

77

Section 4

that with the changes in the parameters, the relationship between the predator and
prey populations are still linked but the relationship has changed (Figure 4.8).

K file:/C:/kepler-1.0.0beta3/demos/gett. . .arted/02-LotkaVolterraPredatorPrey.xml Q@
Eile View Workflow Tools Window Help
3] 7] 2
Go [Pause] [Resume.] [Stop] ¥10 XYPlotter _,J_IJ
[T T T T T T T T T]
Model parameters: 4.0
5 1
re .04
ai 0.0005 3o0r 1
b: 0.1 25k
d: 0.2
20T
Director parameters: 158 1
timeResolution: 1E-10 1.01
startTime: 0.0 05
stopTime: 300 ool
initStepSize: 0.1 v = . > L L L L
minStepSize: e 05 1.0 1 20 25 3.0 35 4.0 45
maxStepSize: . ’; rli [ﬁ 3
i LS X0t TimedPlotter —lJ—I
maxIterations: 20 T T T T T T T
errorTolerance: 1e-6 4.0
valueResolution: 1e-8 S g 1
synchronizeToRealTime: (| 1ol
ODESolver: PExplicitRK455olver" 4 2sf
breakpointODESolver: "DerivativeResolver"” |
rundheadLength: 0.1 20
class: ptolemy.domains.ct.kernel. CTMixedSignalDirector 15[n
semanticType000: urn:lsid: localhost:onto:1:1#Director 10F 4
05 1
0.0 a
0.0 05 1.0 15 20 25 3.0
xio®
execution finished, (|

Figure 4.7: Graphs output by the Lotka-Volterra model with adjusted parameters

4.3 Modifying Workflows

There are two basic ways to modify an existing scientific workflow:

e Substitute a different data set for the current data set;

e Substitute one or more analytical processes in the workflow with other
analytical processes (e.g., substitute a neural network model actor for a
probabilistic model actor).

In order to be substituted, data sets and processing components must be compatible
with the workflow. Workflow documentation should contain information about the
type of data and processing that occur in the workflow; if not, you may need to do
some investigative research: roll over actor ports to see the name of the port and the
type of data it accepts or broadcasts; right-click individual actors and select
Documentation to read more about the type of processing it does; or open existing
data files used by the workflow to see how they are formatted.

78

Section 4

The basic steps involved in modifying a workflow are:

1. Open the desired workflow.

Identify which workflow component is the target for substitution.

3. Select the target component (data actor or processing actor) by clicking it.
The selected component will be highlighted in a thick yellow border.

4. Press the Delete key on your keyboard. The highlighted component will
disappear from the Workflow canvas.

5. From the Components and Data Access area, drag an appropriate data or
processing actor to the Workflow canvas.

6. Connect the appropriate input and output ports and customize the actor
parameters

7. Run the workflow.

N

4.3.1 Substituting Data Sets

Substituting data sets involves "pointing™” the workflow to a new set of data. For local
data, a data set is often specified by an Expression or a StringConstant actor, which use
an expression to generate the location of the data file (see Chapter 8 for more information
about the Expression actor). Other times, the location of the data set is specified as a
workflow or actor parameter. Remote data is often accessed via Kepler data actors that
handle all of the mechanical issues associated with parsing the Ecological Metadata
Language (EML) that describes the data, downloading the data from remote servers if
applicable, understanding the logical structure of the data, and emitting the data for
downstream actors to use when required.

In this section, we'll look at how to substitute a local data set into a workflow as well as
how to substitute remotely stored data sets that use EML. Before substituting data sets
into a workflow, you must ensure that the data are formatted as required by the workflow
(e.g., a tab-separated list or a table with metadata) and that the units and data types are
compatible.

Substituting a Local Data Set
Kepler can read data in many ways and from many formats. For example, the

workflow in Figure 4.9 uses a FileReader actor to access the contents of a data table
saved in a text format. A Display actor then displays the data in a text window.

79

Section 4

(= ” —
SDF Director K| .03-ImageDisplay.Display |- |[0/E3
File Tools Help
2000 10 28 10 1 A~
2000 10 28 10 1
' 2000 10 28 10 1
r File Reader 2000 10 28 10 1
[— 2000 10 28 10 2
>
‘ Display 2000 10 28 10 2
= 2000 10 28 10 2
l :J 2000 10 28 10 2 (=
3
<] I \ B

Figure 4.8: Using and displaying local data in a workflow.

The FileReader actor opens the local data file specified by the actor's parameters. To
substitute another file, simply double-click the FileReader actor to expose its
parameters, click the Browse button to the right of the actor's fileOrURL
parameter, and navigate to the desired file (Figure 4.10). Select a file and click the
Commit button. The actor is now configured to read the specified file.

Edit parameters for File Reader &3
2 :
2 o . v
J property(Tine.separator”)

class: ptolemy.actor ib.jo FleReader
samanticType0o0: urn: lsid: localhost:onto: 1: 1#ReaderExternal Inputictor
semanticTypelll: urn:lsid: localhost:onto:2: 1#LocalInput

[commk || add || Remove | |RestoreDefauks|| Preferences || Hep || cancel |

W |
lookin: | (D gettingtated [v] (¥ 9@

gr 00-StateticaSummary., xml
L;.b =} 01-Smpleaddiion. xmi
My Recent = 02-LctkaVolterraProdatorPrey . ml
Documents | |(e3 03-ImageDisplay, el
— = 04-Heloworkd,xml
£ {3 05-LinearRegresion.ml
Desktop =3 05-WebServicesAndDataTransformation,
= 07-Commandiine _t aml
S i 08-Commandline_2.xml
L=/ = Heloworld.dass
My Documerks || /] HelloWorld jar
[5) Helloworkd, sxva
] {7 mobusc_sbundance.tat |
5! 1) species-distribution. jpg
My Computer # X5LTSample. xsl

d File pams; usc_abundance.txt

My Network =
Places Fibes of type: afFides v! Cancel

=3

Figure 4.9: Configuring the FileReader actor to use data from your local machine.

80

Section 4

NOTE: When creating a workflow, remember that the limitations of the data
determine which processing components are appropriate.

The ReadTablexml workflow (Figure 4.11), which is included in the
KeplerData/workflows/module/r-2.X.Y/demos/R/ directory, is an example of a
workflow that reads a local text-based data file containing species occurrence data
("mollusc_abundance.txt"). The workflow extracts the species names from the data
set as well as the species count and creates a plot of the data (Figure 4.12). See
Chapter 8 for more information about R and how this workflow operates. For now,
we are only concerned with how the workflow accesses data, and how users can
substitute a new data set.

SDF Director

Display

Image)

Data File Name
| property("r.workflowdir’)+ "demos/R/mollusc_abundance.txt”

Separator ReadTable

> "\ t"

RExpression
header

Figure 4.10: The ReadTable.xml workflow.

81

Section 4

g Kirsten%.png E]@
430x4 80 pixels; 8-hit, 225K
L]
o7 8
—_
D —]
o o]
2 - s
@ g
o]
< |
= g .
@)
S s
o 5 g
@ o o _g_ 6
= a & S 8 CJ e _8
| | | | | | | |
Crassostrea Hydrobiidae Melampus

Figure 4.11: Output of the ReadTable.xml workflow. The workflow extracts each species name and
occurrence information from the mollusc_abundance.txt data file, and creates a plot of the data.

The workflow uses an Expression actor labeled Data File Name to reference the data
set. The value:

property ("r.workflowdir")+"demos/R/mollusc abundance.txt"

is an expression written in the Kepler expression language. The expression
'property (“r.workflowdir”)' returns the path to the R module’s workflow
directory in KeplerData. "demos/R/mollusc abundance.txt" is the rest of
the path to this data file.

In this workflow, the input file is a text file containing data in a 'spreadsheet-like'
tabular format. Each line of the file contains one row of values, separated by a
'separator' delimiter—a tab ("\t"), as specified by the workflow's Separator actor.
By default, the first row of the data file is assumed to contain the column names.

82

Section 4

(Setting the value of the header actor to FALSE will change this default). Saving an
Excel spreadsheet as a text file creates such a data file with a tab separator (Figure
4.13).

K| file:/C:/project/kepler/demos/R/mollusc_abundance.txt E]@
File Tools Help

Year Month Day Site Zone Plot Species Mollusc_Count Quadrat_Area Mollusc_Density £
2000 10 30 1 1 1 Littoraria 0 0.2500 0O

2000 10 30 1 1 3 Littoraria [} 0.z2500 O

2000 10 30 1 1 6 Littoraria u} 0.z2500 O

2000 10 30 1 1 =1 Littoraria 4 0.2500 16

2000 10 30 1 2 1 Littoraria [} 0.z2500 O

2000 10 30 1 2 3 Littoraria u} 0.2500 0O

2000 10 30 p Z 6 Littoraria [} 0.z2500 O

2000 10 30 1 2 8 Littoraria u} 0.2500 O

2000 10 26 2 1 1 Littoraria 3 0.5000 6

2000 10 26 2 1 3 Littoraria 1 0.5000 2

2000 10 26 2 1 6 Littoraria 1 0.5000 2

2000 10 26 2 1 8 Littoraria [} 0.5000 O

2000 10 26 2 2 I Littoraria [} 0.5000 O

2000 10 26 2 2 3 Littoraria u} 0.5000 O

2000 10 26 2 2 6 Littoraria u} 0.5000 O

2000 10 26 2 2 8 Littoraria [} 0.5000 O

2000 10 28 3 1 1 Littoraria 2 0.2500 8

2000 10 28 3 1 3 Littoraria 1 0.z2500 4

2000 10 28 3 1 6 Littoraria 0 0.2500 0O

2000 10 28 3 1 8 Littoraria [} 0.06z25 0O

2000 10 28 3 2 1 Littoraria 54 0.5000 108

2000 10 28 3 2 3 Littoraria 119 0.2500 476 (vl

Figure 4.12: The mollusc_abundance.txt data set used by the ReadTable.xml workflow. Data is contained
in columns separated by a tab delimiter.

To use another set of data, simply ensure that the data are formatted correctly, and
substitute the name of the new data set into the Data File Name actor.

Substituting Remote Datasets Via the EarthGrid

Substituting data sets that are stored remotely on the EarthGrid is another simple way to
edit a workflow. For example, the workflow displayed in Figure 4.14 reads an
Intergovernmental Panel on Climate Change (IPCC) data set containing cloud cover data
that are stored on the EarthGrid. This dataset uses EML metadata to describe the data,
and can therefore be downloaded and accessed with the EML2Dataset actor (named
IPCC Climate Change Data: 1961-1990, Cloud Cover in the example workflow).

The workflow converts the data to a new format (see the documentation for the
ClimateFileProcessor actor for more information) and saves it.

83

Section 4

SDF Director
® OutputDir: "C:/IPCCLayers/™

IPCC Climate Change Data: 1961-1990, Cloud Cover

ClimateFileProcessor

Figure 4.13: The example workflow processes an IPCC data set stored and accessed from the EarthGrid.
The data are described using Ecological Metadata Language (EML).

To use the workflow to convert other data (rainfall, wind, temperature, etc), simply
navigate to Kepler's Data tab and search for IPCC (Figure 4.15). Kepler will locate other
IPCC data sets, which will be displayed in the Data tab. Dragging and dropping any EML
data set onto the Workflow canvas instantiates an EML2Dataset actor, which downloads
the data so that it can be used by the workflow. The EML2Dataset actor will
automatically configure itself to provide one port for each attribute described by the EML
description. For example, if the data consist of four columns, the ports might be "Site",
"Date", "Plot", and "Rainfall.”

84

Section 4

K file:/C:/project/kepler/demos/R/dataFrame_R.xml
File Edit View Workflow Tools Window Help

QKPP il @ =)=

[Components Data Outline ! >

7

Search Data

Q PC(Search

IPCC Climate Change Data: CGCM1 A2a Model: 20; » |
IPCC Climate Change Data: CGCM1 AZa Model: 20!
IPCC Climate Change Data: CGCM1 A2a Model: 20
IPCC Climate Change Data: CGCM1 B2a Model: 20:
IPCC Climate Change Data: CGCM1 B2a Model: 20¢

Figure 4.14: Searching for IPCC climate data sets stored on the EarthGrid.

The example workflow can be used to convert any historical IPCC data set. Future
climate change data require a ClimateChangeFileProcessor actor instead of the
ClimateFileProcessor actor.

Note that the EML2Dataset actor can be configured to output the data in one of a variety
of different formats. In the example, the EML2Dataset actor has been configured to
output data "As Cache File Name." To configure a data actor, double-click it and select
the appropriate data output format (Figure 4.16).

85

Section 4

-

Edit parameters for IPCC Climate Change Data: 1961-1990, Cloud Cover

%]
2) e

Data File: Browse
Selected Entity: ccld6190. dat - (v
Data Output Format: s Cache File Mame] .‘v'
File Extension Filter: 4s Field
Allow lenient data parsing: As Table
Check for latest version: 5 Roms

: As Byte Array
recordid: s UnCompressed File Name
endpoint: As Cache File Name

As Column Vector
As ColumnBased Record

namespace:

[Commit] [Add] [Remove] [Restore Defaults] [Preferences l [Help] [Cancel]

Figure 4.15: Customizing the data output format of the data actor.

For more information about data output formats, please see Chapter 6.

4.3.2 Substituting Analytical Components

Kepler comes with hundreds of ready-to-use components that can be plugged into
existing workflows to customize the workflow processing. Data can be converted
into a variety of different formats or displayed in different ways. In this section, we
will look at how to change the way a workflow displays its output by substituting
one kind of display actor for another.

The Image Display workflow found under “demos/getting-started/03-ImageDisplay.xml”
(Figure 4.17) converts an image--a bitmapped image representing the species distribution
of the species Mephitis, a skunk, throughout North and South America—and then
displays the image using an ImageJ actor, which uses the ImageJ application to open and
work with a wide variety of images (tiffs, gifs, jpegs, etc.) For more information about
ImagelJ, see Chapter 8.

SDF Director

|:1> property"outreach.workflowdir’)+"dem..,

Image]

Figure 4.16: The Image Display workflow. The ImageJ actor is highlighted.

86

Section 4

The Image Display workflow converts the specified image, a jpeg file, to a png
format and then displays it (Figure 4.18). The actor also opens the Image]
application, which can be used to modify the image via a handy toolbar (Figure
4.19).

species-distribution.PNG (75%) [JIE
1440%720 pixels; RGE; 4.0MB

Figure 4.17: The output of the ImageJ actor. The image was originally created by GARP, a genetic
algorithm that creates an ecological niche model for a species that represents the environmental conditions
where that species would be able to maintain populations. GARP was originally developed by David
Stockwell, at the San Diego Supercomputer Center. For more information on GARP, see
http://www.lifemapper.org/desktopgarp/.

Image.) E]

File Edit Image Process Anabhze Pluging Window Help
B ol 3N A+ N A |&fole] | |] |] |

Text tool

Figure 4.18: The ImageJ toolbar that permits users to modify the image.

Rather than using Image] to display the workflow output, you may wish to use a
simple browser interface. To do so requires a single actor substitution—swapping a
BrowserDisplay actor for the Image] one. To make the substitution:

1. Open the 03-Image-Display.xml workflow from the “demos/getting-started/”
directory.

2. Select the target component, the Image/ actor in this case. The Image] actor
will be highlighted in a thick yellow border, indicating that it is selected.

3. Press the Delete key on your keyboard. The Image] actor will disappear from
the Workflow canvas.

87

http://www.sdsc.edu/
http://www.lifemapper.org/desktopgarp/

Section 4

4. From the Components and Data Access area, drag the Browser Display actor
to the Workflow canvas. You can find the Browser Display actor in the
Components tab under “Components > Data Output > Workflow Output >
Textual Output.”

5. Connect the output port of the ImageConverter actor to the input port of the
Browser Display actor. To connect the ports, left-click and hold the output
port (black triangle) on the right side of the Image Converter actor, drag the
pointer to the upper input port on the left side of the Browser Display actor,
and then release the mouse. If the connection is made, you will see a thick
black line (Figure 4.20). If the connection is not completely made, the line
will be thin.

6. Run the workflow. Note that the image is now displayed in a browser
window (Figure 4.21).

SDF Director

Image Filename Image Converter

L# propertyl“outreach.workflowdir) + “"dem... m

Browser Display

Il

Figure 4.19: The Image Display workflow with the Browser Display actor substituted for the ImageJ actor.

NOTE: Sometimes the easiest way to connect actors is to go from the output port of
the source to the input port of the destination.

88

Section 4

&1 species-distribution.PNG - Windows Picture and Fax Viewer ‘:ﬂ@

00 E&Q | LR ar XSHHE| @

Figure 4.20: The image displayed by the Browser Display actor.

4.4 Saving Workflows

Workflows are saved in KAR or XML format, which can be easily stored and shared.
To save a workflow, select the Save, Save As, or Export As... menu item from the File
menu, then name the file and select a save location.

For instructions on saving a workflow and sharing it with others, see Section 5.9
Saving and Sharing Workflows.

4.5 Searching for Data and Components

Kepler provides a searching mechanism to locate data (on the EarthGrid) and
analytical processing components (on the local system as well as the remote Kepler
repository).

4.5.1 Searching for Available Data

Via its search capabilities, Kepler provides access to data that is stored on the
EarthGrid. EarthGrid resources are stored in the KNB Metacat and the KU Digir
databases. For more information about the EarthGrid, see Chapter 2.

89

http://cvs.ecoinformatics.org/cvs/cvsweb.cgi/kepler-docs/user/UserManual/5.12SavingAndSharingWorkflows.doc
http://knb.ecoinformatics.org/
http://www.specifysoftware.org/Informatics/informaticsdigir/

Section 4

To search for data on the EarthGrid:

=

In the Components and Data Access area, select the Data tab (Figure 4.22).
Type in the desired search string (e.g., Datos Meteorologicos). Make sure that
the search string is spelled correctly. You can also enter just part of the entire
string - e.g. ‘Datos’.

To configure the search, click the Sources button (make sure the Data tab is
selected). Selecting the sources to be searched and the type of documents to
be retrieved can help streamline the search and reduce the amount of time
required to return results. For example, because Datos Meteorologicos is
stored in the KNB Metacat database, the data source for the search can be
limited to just that node on the grid. In the Source dialog window, uncheck
“KNB Metacat Authenticated Query Interface" and click OK.

Click the Search button. Results may take 20 seconds to return. A status bar
at the bottom of the Data tab scrolls until the search is complete. When the
search is complete, a list of search results will be displayed in the
Components and Data Access area. The number of returned results is
displayed in the status area.

To use one or more data actors in a workflow, simply drag the desired data
set to the Workflow canvas.

90

Section 4

®6oco . |\nnamed
IBRERRIMOESEI RO
{ Components ~ Data | Outline] :
rSearch Data
[Q,atos meteorologicos (Search)
. Datos ?\/Eeorologicos
B>
1 results returned.
Datos eorologicos
-2
i
v
- — — — — — — — — — — — — — 4
7

Figure 4.21: Searching for and locating Datos Meteorologicos, a data set that is stored on the EarthGrid.

For more information about the data set, right-click Datos Meteorologicos in the
Components and Data Access area or on the Workflow canvas and select Get
Metadata (Figure 4.23). Depending upon the amount of information entered by the
provider, much valuable metadata can be obtained. For example, the type of value
and measurement type of each attribute help you decide which statistical models

are appropriate to run.

91

Section 4

@ Kepler File View Tools Help DEH B e 2 4 Thu2i4lPM Q

=R O E IR

Workflow
ann hemijiao. 1
L — i
180.1.1 (metacattiao 1 Vkepler) I
ML Fie f
Name: Datos Meteorologicos I
eserier: e e, et 1 Hachious pack 7 3801 f
Downiosd Fie ecogndnbitzo 2 1 |
Gbject Nam: anciedet \
xE . 188860 bytes \
Craracter Encodeg: ASCl |
Number of Hesder \
Lines: \
Record Delriter \
=L ftaiind Maximun Recard 1
57 Lengén |
Simple Delimted: Field Delmeter: |
(Case Seruiiva? o |
Number Of Racords: 100 |
Listen to Actor Attrioute Doscrigton |
Suggest > (o TypeofVake Measurement Type and Domain j
Semantic Type Annotation
Save Archive (AR) DATE DATE -Date of cotecton G :
Upload to Repository ‘
View LS| o o |
Preview v
Appearance »
- TART_AR - Ar tampsratire tos
RH RN - Retatee Hum
EW DEW- Dew ot foat
BARO BARO - Baromsinc preasurs toat

WD WO - Wiing direction

Figure 4.22: Viewing Metadata

The data actor will automatically configure its output ports to match the data.
Mouse over the data ports to reveal a port tooltip (Figure 4.24). The tooltip contains
the name of the port/data field as well as the data type.

Datos M:eorologicos

B

BARO, type:{double} |
4

Figure 4.23: Identifying data ports. Mouse-over each output port to reveal the port tooltip.

You can also preview the data set by right-clicking the actor and selecting Preview
from the drop-down menu (Figure 4.25).

92

Section 4

Molusc Ewbm abundance monitonng: Fall 20001

b
Configure Actor #E

Customize Name
Configure Ports
Configure Units

Open Actor
Documentation
Listen 10 Actor s ‘ s ¥
Suggest a 10 v 1 1 1Litter,. 0 026 o'n
Semantic Type Any o 10 I Iptter... o 025 of
: a 10 >) 1 & Litter... o 0328 o
Save Archive ‘m o 10 0 1 1 at‘m... 4 028 18
Upload to Reposit o 10 o 1 2 1k, . 0 026 o
View LSID 010 3 1] 2 3k, o 025 o
Proview o 10 0) 2 6 Litter... o 025 o
0 L0 0 1 2 B Ltter, o 028 0
Appearance 0 10 26/ & 1 1 Lteer, . 3 0.5 [
0 1D 25 2| 1 Jltter ... 1 05 2
o o] 28 2| 1 6Littor. I
o o] 2 2 1 o tter, o 08 o
o o 2 2 2 1 o 05| o
3 10 2] 2] 2 3 Litter 0 05 0
0 1o 20 2 2 Oltter, . o 05 &
o o] 29 3 2 8 Lttcr o 05 o
o 10| 28 3 1 1t 2l 0% ¥
a 1 2 3l 1 Itz 1 625 4
) 10 28 3 1 6 Litter,.. 0 025 o
o 10 @ 3 1 oiitcr.. . 0 0082 0
0 10 z 3 2 1 . g 05 108
0 L0 P 3 2 dtker., e 025 476
a 10 ﬁ 3l 2 6 Litter,.. 17 025 45
o 10 3 2 Siftor.. | 93 025 372
o mi . 2utter, o 03 ol

Figure 4.24: Previewing the Datos Meteorologicos data set.

4.5.2 Searching for Standard Components

Kepler comes standard with over 350 workflow components and the ability to
modify and create your own. Users can create an innumerable number of workflows
with a variety of analytic functions. The default set of Kepler processing
components is displayed under the Components tab in the Components and Data
Access area. Components are organized by function (e.g., “Director” or “Filter”). To
search for processing components:

1. In the Components and Data Access area to the left of the Workflow canvas,
select the Components tab.

2. Type in the desired search string (e.g., “File Reader”).

3. Click the Search button. When the search is complete, the search results are
displayed in the Components and Data Access area. The search results

93

Section 4

replace the default list of components. You may notice multiple instances of
the same component; this is because the same component may appear in
multiple categories in the search results.

4. To use one or more components in a workflow, simply drag the desired
components to the Workflow canvas.

5. To clear the search results and re-display the list of default components, click
the Cancel button.

NOTE: If you know which component you want to use and its location in the
Component library, you can navigate to it directly, and then drag it to the Workflow
canvas.

4.5.3 Searching for Components in the Kepler Repository

The Kepler Repository allows users to upload and download workflow components
to and from a centralized server. Users can search for available components via the
Kepler interface. To search for components that are stored remotely in the Kepler
repository in addition to the components contained in the local library:

1. Select the Components tab.

2. Click the Sources button.

3. Check the Search checkbox on any remote repositories you wish to search
and click OK.

4. Type in the desired search string (e.g., “ActorDesignedForWorkflow”).

94

Section 4

O Unnamed1
[@l@/iEeb | Il@ =)mmi o e
[Components = Data Outline] N Workflow

Search Components

(q Current Time). E Search -)

['- Advanc... -\I ['-Snurces- -\I I"- Cancel -‘I

™

[Al Ontologies and Folders o 1

. Search Results
¥ L Components
¥ Data Input
¥ Local Input
O Current Time
v Actors-2_0
¥ [l CoreActors, kar
Current Time
¥ 1l CurremtTime,kar
O Current Time
3 results found.

i -

Figure 4.25: Searching the Kepler repository for components.

5. Click the Search button. When the search is complete, the search results
replace the default list of components. You may notice multiple instances of
the same component; this is because the same component may appear in
multiple categories in the search results.

6. To use one or more components in a workflow, simply drag the desired
components to the Workflow canvas, or right-click on a KAR result and select
Download. The downloaded KAR will be placed into your local repository (by
default, KeplerData/workflows/MyWorkflows/). If the component requires
modules you do not have installed, Kepler will offer to download those
modules. If this is required, you will probably have to restart Kepler
afterwards to restore full functionality.

7. To clear the search results and re-display the list of default components, click
the Cancel button.

NOTE: You can also search the Kepler Repository directly by going to:

95

Section 4

http://library.kepler-project.org/kepler/

Actors and Workflows can be downloaded from this website and manually imported
into Kepler.

96

http://library.kepler-project.org/kepler/

Section 5

5. Building Workflows with Existing Actors

Building workflows with existing actors is a relatively simple process that can be
accomplished entirely on the Workflow canvas. Components need only be dragged
and dropped onto the canvas, customized, connected, and run!

For example, the “Hello World” workflow is a very simple workflow that outputs the
famous line "Hello World" until the workflow is paused or stopped (Figure 5.1). The
workflow requires a Constant actor, a Display actor, and an SDF Director.

Constant Display (Hello World

Hello World
,I T I Hello World

Hello World

Hello World

‘ 11.03-ImageDisplay.Display g@
File Tools Help

Hello World ~
|[Hello World

Hello World

SDF Director

|[Hello World
ello World g

Figure 5.1: “Hello World” workflow and output.

To create the Hello World workflow:

w

v

Open Kepler. A blank Workflow canvas will open.

In the Components and Data Access area, select the Components tab, then
navigate to the “Components/Director” directory.

Drag the SDF Director to the top of the Workflow canvas.

To run the workflow a limited number of times, right-click the SDF Director
and select “Configure Director” from the menu. Type the desired number of
iterations into the iterations field of the “Edit parameters for SDF Director”
dialog window and click the Commit button to save your changes.

In the Components tab, search for “Constant” and select the Constant actor.
Drag the Constant actor onto the Workflow canvas and place it a little below
the SDF Director.

Configure the Constant actor by right-clicking the actor and selecting
Configure Actor from the menu. (Figure 5.2)

97

Section 5

Constant

a ;
Customize Name
Configure Ports
Configure Units f Eda parameters for Constant
Open Actor %L m

Get Metadata finngCountlimt NONE

Documentation » valoe

Listen to Actor class prolemy.actoe ib Const
Suggest » Semantic Typeod

Semantic Type Annotation... semanticTypell

Save Archive (KAR)... e

Upload to Repository

View LSID

Preview Cancel Help Preferences
Appearance »

Figure 5.2: Configuring the Constant actor.

8. Type “Hello World” (including the quotes) in the value field of the “Edit
parameters for Constant” dialog window and click Commit to save your
changes. “Hello World” is a string value. In Kepler, all string values must be
surrounded by quotes.

9. In the Components and Data Access area, search for “Display” and select the
Display actor found under “Textual Output.”

10. Drag the Display actor to the Workflow canvas.

11. Connect the output port of the Constant actor to the input port of the Display
actor.

You are now ready to run the workflow.

5.1 Prototyping Workflows

Before building a workflow in Kepler, the workflow must be prototyped. Much like a
vacation plan—which might involve booking a flight and hotel room, checking the
weather forecast, packing a suitcase, and catching a cab to the airport--scientific
workflows also break down into a series of steps that often depend on the outcome
of previous steps. Identifying the steps of your workflow, from reading data, to
transforming and processing it, to outputting results in a desired format, is the bulk
of the prototyping work. Once the functions of the workflow have been defined, you
can focus on selecting the appropriate components from the Kepler library (and/or
designing new components as necessary).

Kepler allows users to quickly prototype workflows. Scientists do not have to write
an application; instead they just have to "draw" it, deciding what steps must be
performed, what type of data the workflow will process, and what the output will
be. Each step is ultimately represented by an actor, which uses ports to pass the
required data. Figure 5.3 and Figure 5.4 display examples of conceptual workflows
used to create Kepler workflows.

98

Section 5

A) Test sample
#—@— 2
EcoGrid Sample Model Map Validation User

Data

Query Calculation Prediction

Layer
Integration

EcoGrid
Query

Layer
Integration

Map
Generation

Figure 5.3: A conceptual prototype for a Kepler ecological niche modeling workflow?3

Compute clusters
(mun. distance)
'

Select gene-set
e Compute
Retrieve Subsequence labels

Transcrption factors

Arrange
Transcription factors
Retrieve matching !
cDNA With all

¥ Promoter Models

Retrieve genomic .
Sequence Align promoters

: 4 Compute Joint
Extract promoter Create consensus Promoter Model
Region(begin, end) sequence

Figure 5.4: A conceptual prototype of the Promoter Identification workflow. 14

13 See Pennington, Deana. July, 2005.The EcoGrid and the Kepler Workflow System: a New Platform
for Conducting Ecological Analyses, Bulletin of the Ecological Society of America.

99

Section 5

Complex workflows can easily be prototyped in Kepler using the CompositeActor actor.
Simply drag as many CompositeActors as needed to the Workflow canvas, add the
number of input/output ports determined necessary, connect the components, and change
the CompositeActor names to appropriately identify the function of the actor (Figure 5.5).

['K Unnamed \a UU
Fle Edt Vew Woriflow Jooks Window Help

QadaPli@dmpd-0e

| Components = Data Outline ‘

Search Components
Q compon iteActor (searcn)

PN Director
(aovanc..) (Sources)

All Ontologies and Folders ¢

e arch Reyumy

v J Componerts

lecule
¥ Caneral Parpose
B Compormeicnor
¥ Workfios Use Babel o ransform molecutar format 1o required format

B Cormpormeictor
Acars-2 0

v Compostercien har
B Compormeacior Create GAMESS input e fom converied data
v i Coreacions har
> Dwecrons

£ i

» Ogendap
Run GAME SS with generated nput fle

Use Babel o transform GAVE SS output

Display molecular configuraton with OMView software

S results found

Figure 5.5: Using composite actors to prototype a workflow in Kepler.

In Figure 5.5, each CompositeActor represents a high level logical function in a
workflow designed to prepare and run a GAMESS (General Atomic and Molecular
Electronic Structure System) experiment and display the results. In the prototype stage,
the actors don't need to do anything; later, as the workflow is developed, each of the
composite actors can be opened, and detailed sub-workflows can be constructed inside
(either with existing actors or new ones) to perform its task. For more information about
composite actors, see Section 5.4.

14 See Altintas, Iklay, Coleman, Matthew, Critchlow, Terence, Gupta, Amarnath, Ludaescher, Bertram,
Peterson, Leif. Promoter Identification Workflow Specification. http://kbi.sdsc.edu/SciDAC-SDM/piw-
specification.ppt#256,1, Promoter Identification Workflow Specification.

100

Section 5

5.2. Choosing a Director

Every workflow requires a director, but which one? Each of the directors packaged with
Kepler—Synchronous Dataflow (SDF), Process Networks (PN), Dynamic Dataflow
(DDF), Continuous (ContinuousDirector), and Discrete Events (DE)—has a unique way
of instructing the actors in a workflow. Just as one would not hire David Lynch to direct a
romantic comedy, or Steven Spielberg for a high school reunion flick, one would not, in
general, use the SDF Director for a workflow that involves integrals, or the Continuous
Director for simple data transformation. But, why? And how does one choose an
appropriate director to use?

Which director to use under what circumstances is a question that should be answered
during the initial stages of workflow design. As you sketch out the workflow steps and
think about the types of processes the workflow will perform, keep the following
questions in mind: Does the workflow depend on time? Does the workflow require
multiple threads or distributed execution? Does it perform a simple data transformation
with constant data production and consumption rates? Is the model described by
differential equations? The answer to these questions will often indicate the best director
to use.

In the next section, we will take a closer look at the above questions and how each can
help in the director selection process.

Question 1: Does the workflow explicitly depend on time?

Though every task we perform—from balancing a checkbook to integrating polynomials
and trigonometric functions by hand-- requires time, not every Kepler workflow needs to
understand that time passes. A workflow that reformats one type of static data file into
another type needs to be able to read the input format and know how to translate it, but
does not need to know that three seconds has passed between the time the workflow
began and the time it finished. A workflow that examines a series of molecules and
compares (or models or displays, etc) their structures is another example of a workflow
that has no need for a concept of time. The director of these workflows must know how
to order the events—at what point in the workflow each actor must perform—but it does
not need to schedule the actors' actions at specific times.

Some workflows require a notion of time. A workflow that describes resource-limited
population growth—where population is a function of time and the rate of population
change (i.e., a simple linear extrapolation)—must incorporate time in order to calculate
predicted growth. A workflow that models events that occur at discrete times—the times
at which lightning strikes a particular point and the best way to minimize one's chance of
being struck, for example—also requires a notion of time. Note that "model” time and
"real” time can differ. For example, an analysis may take only seconds of "real™ time to
perform, but the "model” time may have advanced by several hours or more.

101

Section 5

Some Kepler directors are best suited for time-dependent workflows and others for time-
independent workflows. In general, if a workflow requires a notion of time, you should
use a Continuous, or DE director. If a workflow does not require a notion of time, use an
SDF, PN or, DDF director. We'll talk more about each of these directors and how they
work later in this chapter.

Question 2: Does the workflow require independent threads and/or distributed
execution?

If the answer to Question 1 is no, skip to Question 4. If you determine that a workflow
does not require a notion of time, the next question to ask is whether or not the workflow
requires multiple threads (i.e., independent workflow processes that run in parallel)
and/or distributed execution (i.e., remote data processing or access). If so, the workflow
should most likely use a PN Director.

In a PN workflow, each actor has its own Java thread, permitting the workflow to
perform multiple tasks simultaneously. A workflow can query a remote database, for
example, and simultaneously process other calculations, even if the query results are
delayed. The PN Director is also well suited for overseeing workflows that require
complex logic.

In DDF and SDF workflows, actors are executed one at a time with a single thread of
execution for the workflow.

Question 3: Does the model perform a simple data transformation with constant
data production and consumption rates?

If you determine that a workflow does not require a notion of time nor multiple threads
and/or distributed execution, the next question to ask is: Does the model perform a simple
data transformation with constant data production and consumption rates?

A simple data transformation is one that does not involve deeply hierarchical or recursive
structures. Examples of simple data transformations include converting one type of token
to another (a series of items to an array, for example), translating one file format to
another (an XML file to an HTML Web page, for example), calculating the average of a
series of values, or reading a file and outputting a specific line or value.

A "constant data rate” means that all actors in the workflow consume and produce a
consistent, pre-determined number of data tokens every time the workflow iterates. A
token can be thought of as a container used to hold data of various types (strings,
integers, objects, arrays, etc.). Note that even though an array may consist of multiple

102

Section 5

items, it is represented by a single token that is passed from the output port of one actor
to the input port of another via channels.

In the simplest constant rate workflow, actors consume one data token on each input port
and produce one token on each output port whenever the workflow executes (‘fires’). An
example is a workflow that simulates a coin toss by using the Bernoulli and Display
actors to generate and display a series of random true and false values. This
workflow has a constant data rate because each time it is run, the Bernoulli actor
generates and outputs one token of data, and the Display actor receives and displays
exactly one token as well. Workflows may still have a constant data rate even if they
contain actors that consume and/or produce more than one token each time they execute.
For example, a workflow that uses the TokenDuplicator actor to receive a single token
and output three duplicated tokens has a constant data rate (i.e., the actor consumes one
token and produces three each time it executes) even though the number of tokens
consumed and produced is not equivalent. However, actors that consume and produce a
different number of tokens each time they execute (e.g., a BooleanSwitch actor that
outputs a true value if the input value is true, and produces no output otherwise) do
not have a constant data rate.

If you determine that your workflow performs a simple data transformation and has a
constant data rate, you will most likely use an SDF Director to oversee the workflow.
Because data rates are constant, the SDF Director can pre-calculate a workflow execution
schedule, making the director very efficient. Under a DDF Director, data consumption
and production rates do not have to be constant, allowing for more dynamic execution.
DDF Directors are well suited for control structures (e.g., if/then/else) using
BooleanSwitch and DDFBooleanSelect actors, which consume or produce tokens on
different channels based on the token received from the control port.

Question 4: Is the model described by differential equations?

If you have determined that your workflow depends on time (i.e., the answer to Question
1 is "yes"), the next question you should ask is: Is the model described by differential
equations?

Differential equations are most often used by workflows that describe dynamic systems
(systems that depend upon a continuously varying time parameter, such as the population
growth of a predator and/or its prey over time) or workflows that are used to perform
numerical integration. These workflows should use the Continuous Director, which is
designed to work with ordinary differential equations.

Time-oriented workflows that do not involve differential equations will likely use a DE
Director to execute events at specified times (e.g., to process information--sensor data,
for example--that has a time stamp) or for scheduling simulations (a queuing system, for
example).

103

Section 5

Does workflow explicitly depend on time'?
- Qe?\f\
~NC ~
C "SDF. PN, or DDF Continuous or DE
—_Directors __— Directors
Does workflow require independent threads Is model described by
and/or distnbuted execution? differential equations?
o\ ™\
AN 5
‘no [ye\S\

Is workflow a simple data PN Director DE Director Continuous Director
transformation with constant I‘" : . ';ecn‘rd -
i compiex iogic e alsp ne 5 . =

data production/consumption Sdsotndent tisads scheduling simulations numerical integrator

rates? |[dynamic simulations

distnbuted execution

DDF Director SDF Director
dynamic execution, pre-calculated firing rules
workflows containing actors fastest execution

with variable consumption
rates (BooleanSwitch)

Choosing a Director for a Kepler Workflow

Figure 5.6: Choosing a director.

In most cases, you can determine the appropriate director to use for a workflow just by
answering a handful of questions. Figure 5.6 provides a useful quick-reference.

The five directors included in Kepler: SDF, PN, DDF, Continuous, and DE, are the most
commonly used directors, and each is described in the following sections. However,
Kepler software supports the full range of directors used by Ptolemy. For more
information about additional directors, please see the Ptolemy documentation.

5.2.1 Synchronous Dataflow (SDF)

The SDF Director is very efficient and will not tax system resources with overhead. It
achieves this efficiency by precalculating the schedule for actor execution. However,

104

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html

Section 5

this efficiency requires that certain conditions be met, namely that the data
consumption and production rate of each actor in an SDF workflow be constant and
declared. If an actor reads one piece of data and calculates and outputs a single
result, it must always read and output a single token of data. This data rate cannot
change during workflow execution and, in general, workflows that require dynamic
scheduling and/or flow control cannot use this director. Additionally, the SDF
Director has no understanding of passing time (at least by default), and actors that
depend on a notion of time may not work as expected. For example, a TimedPlotter
actor will plot all values at time zero when used in SDF.

The SDF Director is often used to oversee fairly simple, sequential workflows in which
the director can determine the order of actor invocation from the workflow. Types of
workflows that would run well under an SDF Director include processing and
reformatting tabular data, converting one data type to another, and reading and plotting a
series of data points. A workflow in which an image is read, processed (rotated, scaled,
clipped, filtered, etc.), and then displayed, is also an example of a sequential workflow
that requires a director simply to ensure that each actor fires in the proper order (i.e., that
each actor executes only after it receives its required inputs). In Figure 5.7, the SDF
Director ensures that the image is not displayed until it is processed, and that the image is
not processed until it is read.

By default, the SDF Director requires that all actors in its workflow be connected.
Otherwise, the director cannot account for concurrency between disconnected workflow
parts. Usually, a PN Director should be used for workflows that contain disconnected
actors; however, the SDF Director's allowDisconnectedGraphs parameter can be
set to true. The SDF Director will then schedule each disconnected ‘island’
independently. The director cannot infer the sequential relationship between disconnected
actors--nothing “forces” the director to finish executing all actors on one island before
firing actors on another. However, the order of execution within each island should be
correct. Usually, disconnected graphs in an SDF model indicate an error.

SDF Director

Image Display

Image Reader Image Rotate

Figure 5.7: A simple SDF workflow used to read, process, and display an image. Note that all actors are
connected and that the workflow does not depend on the passage of time.

Workflows that require loops (feeding an actor's output back into its input port for
further processing) can cause "deadlock” errors under an SDF Director (or any

105

Section 5

director, for that matter). The deadlock errors occur because the actor depends on
its own output value as an initial input. To fix this problem, use a SampleDelay actor
to generate and inject an initial input value into the workflow. The workflow in
Figure 5.8 uses a SampleDelay actor to set an initial population value (n) of 1 that is
used when the workflow first iterates.

SOF Eim:cwr
SequencePloter initial Ol'l(‘/ul;ahrm

growth factor er 26

camying capacity @k /00

number of iterationg®nSteps: 100
Discrete Logistic
Edit parameters for SampleDelay / &.‘i‘
?) inkisloutpus:

\./ puts: {inzPop}|
class: polemny.domains.sdf kb, SampleDelay
semanticType00: urnilsid:localhost:onto: 1:1#Controlictor
semanticTypell: unilsid:localhost:onko:2: 1 # WorkflowControl

[Coenmi] [Add] [Remove] [Rcstotc Defauks | | Preferences | [Help] I Cancel]

Figure 5.8: Using a SampleDelay actor to prevent deadlock errors. The above workflow is found at
outreach/workflows/demos/SEEK/DiscreteLogistic_SDF_Director.xml.

SDF Directors control how many times a workflow is iterated. Most often, a workflow
need be run only once, but there are instances in which a workflow should iterate more
than once: if a workflow contains a loop that should be executed several times, for
example, as in Figure 5.8.

In Figure 5.8, a workflow loop is used to feed the output of an Expression actor called
Discrete Logistic back into its input (as well as into a SequencePlotter, which plots
the data) so that a new result can be calculated using the previous result. The SDF
Director specifies that the loop iterate 100 times before stopping. Note that a
SampleDelay actor is used to generate an initial population value, which is used the
first time the workflow runs.

The number of times a workflow is iterated is controlled by the director's iterations
parameter. Since Kepler 2.4, this parameter is set to "AUTO" by default, which means
the director will run the workflow once when it is placed in the top-level workflow.
When it is placed in a composite actor, the director will keep running the sub-workflow
inside of the composite actor until the top-level director tells it to stop. In other words,
"AUTO" means its value will be "1" when it is placed in the top-level workflow, and will

106

Section 5

be "UNBOUNDED" when it is placed in a composite actor. This default value works for
most cases. You can also select "UNBOUNDED" or specify "0" for this parameter,
which means the workflow will iterate forever. Concrete numbers can be specified here
too for the actual number of times the director should execute the workflow.

The SDF Director also determines the order in which actors execute and how many times
each actor needs to be fired to complete a single iteration of the workflow. This schedule
is calculated BEFORE the director begins to iterate the workflow. Because the SDF
Director calculates a schedule in advance, it is quite efficient. However, SDF workflows
must be static. In other words, the same number of tokens must be consumed/produced at
every iteration of the workflow. Workflows that require dynamic control structures, such
as a BooleanSwitch actor that sends output on one of two ports depending on the value of
a 'control', cannot be used with an SDF Director because the number of tokens on each
output can change for each execution.

Unless otherwise specified, the SDF Director assumes that each actor consumes and
produces exactly one token per channel on each firing. Actors that do not follow the
one-token-per-channel firing convention (e.g., Repeat or Ramp) must declare the
number of tokens they produce or consume via the appropriate parameters. In
Figure 5.9, a Ramp actor is used to generate five tokens, which are passed to a
SequenceToArray actor. The number of tokens the Ramp actor generates is specified
with the actor's firingCountLimit parameter. The SequenceToArray actor must
be told to expect five tokens, not one. The workflow uses a Constant actor that
contains a variable called FiringCountLimit to tell the SequenceToArray actor to
expect five tokens. The SequenceToArray actor reads the input tokens, generates a
single array from them, and outputs a single token containing a five element array.
Because the output of the SequenceToArray actor as well as the input of the Display
actor conform to the one-token-per-channel firing convention, there is no need to
specify a data consumption/production rate.

107

Section 5

SDF Director
@ FiringCountLimit: 5

Ramp

Sequence To Array
Display

Constant
é FiringCountLimit

Figure 5.9: An example of an SDF workflow. Note that the data consumption rate for the
SequenceToArray actor must be specified before the workflow is run.

The amount of data processed by an SDF workflow is a function of both the number
of times the workflow iterates and the value of the director's
vectorizationFactor parameter. The vectorizationFactor is used to
increase the efficiency of a workflow by increasing the number of times actors fire
each time the workflow iterates. If the parameter is set to a positive integer (other
than 1), the director will fire each actor the specified number of times more than
normal. The default is 1, indicating that no vectorization should be performed.
Customizing the vectorizationFactor parameter can be useful when
modeling block data processing. For example, a signal processing system that filters
blocks of 40 samples at a time using a finite-impulse response (FIR) filter can be
built using a single sample filter, provided the vectorizationFactor parameter
of the SDF Director is set to 40. Here, each firing of the SDF model corresponds to 40
firings of the single sample FIR filter.!> Keep in mind that changing the
vectorizationFactor parameter changes the meaning of a nested SDF
workflow and may cause deadlock in a workflow that uses it.

The SDF Director has several advanced parameters that are generally only relevant
when an SDF workflow contains composite components. In most cases the
period, timeResolution, synchronizeToRealTime,
allowRateChanges, timeResolution, and constrainBufferSizes
parameters can be left at their default values.

For more information about the SDF Director, see the Ptolemy documentation. The
Ptolemy site also has a number of useful examples.

15 Please see the Ptolemy documentation for more information

108

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/sdf/doc/body.htm
http://embedded.eecs.berkeley.edu/concurrency/ptolemy/sdf.pdf

Section 5

5.2.2 Process Networks (PN)

The Process Network (PN) Director, unlike the SDF Director, does not statically
calculate firing schedules. Instead, in a PN workflow each actor has an independent Java
thread and the workflow is driven by data availability: tokens are created on output ports
whenever input tokens are available and output can be calculated. Output tokens are
passed to connected actors, where they are held in a buffer until that next actor collects
all required inputs and can fire. The PN Director finishes executing a workflow only
when there are no new data token sources anywhere in the workflow.

Because PN workflows are very loosely coupled, they are natural candidates for
managing workflows that require parallel processing on distributed computing systems.
PN workflows are powerful because they have few restrictions. On the other hand, they
can be very inefficient because the director must keep looking for actors that have
sufficient data to fire. (Remember that for SDF, the execution schedule is determined
once, before the workflow starts to execute.)

The same execution process that gives the PN Director its flexibility can also lead to
some unexpected results: workflows may refuse to automatically terminate because
tokens are always generated and available to downstream actors, for example. If one
actor fires at a much higher rate than another, a downstream actor's memory buffer may
overflow, causing workflow execution to fail.

The workflow in Figure 5.10 appears to generate a constant and display it. However, this
workflow may not work correctly due to the interaction between the Constant actor,
which, by default, always produces an output when "asked" by the director, and the PN
Director, which always asks for an actor's output unless the actor indicates that it is
finished. Because the Constant actor is never "finished", the PN Director will continue to
ask for output, and the workflow will iterate forever--or at least until the input buffer of
the Display actor overflows. One can correct the problem by changing the
firingCountLimit parameter of the Constant actor to some finite value (Figure
5.11).

109

Section 5

PN Director

Constant Display

i T |

Figure 5.10: This workflow will not work under the PN Director unless the Constant actor's
firingCountLimit parameter is set to a finite value.

Edit parameters for Constant @
\? !j firingCountLimit: D
value: 1
class: ptolemy. actor.lib.Const
semanticType00: urn:lsid:localhost:onto: 1:1#ConstantActor
semanticTypell: urn:lsid:localhost:onto:2: 1#Constant
kar: urn:lsid:kepler-project.org:kar:57:1
[Comit] [Add] [Remove] [Restore Defaults] [Preferences] [Help] [Cancel]

Figure 5.11: Set the firingCountLimit parameter to an integer to use the Constant actor under a PN
director.

The PN Director has several advanced parameters (initialQueueCapacity and
maximumQueueCapacity) that are only relevant for performance tuning in
special cases. For most workflows, leave these parameters at their default values.

For more information about the PN Director, see the Ptolemy documentation. The
Ptolemy site also has a number of useful examples.

5.2.3 Discrete Events (DE)

The Discrete Event (DE) Director, which oversees workflows where events occur at
discrete times along a time line, is well suited for modeling time-oriented systems,
such as queuing systems, communication networks, and occurrence rates or wait
times. One classic problem that a DE Director can manage well is the bus
station/bus rider problem, where buses and riders arrive at a bus station at random
or fixed rates and the public transit director wishes to calculate (or minimize) the
amount of time that riders must wait.

110

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/pn/doc/body.htm

Section 5

In DE workflows, actors send "event tokens," which consist of a data token and a time
stamp. The director reads these tokens, and places each on a global, workflow timeline.
Large event queues or queues that change often are “expensive” in terms of system
resources and may have performance issues.

All actors in a DE workflow must receive input tokens, even if the tokens are solely used
as triggers. Once active, an actor will fire until it has no more tokens in its input ports, or
until it returns false.

Because DE actors only fire only after they receive their inputs, workflows that require
loops (feeding an actor's output back into its input port for further processing) can cause
"deadlock™ errors. The deadlock errors occur because the actor depends on its own output
value as an initial input. To fix this problem, use a TimedDelay actor to generate and
inject an initial input token.

The DE Director and each event in its workflow contain a tag that consists of a
timestamp and additional information that helps the director determine when to
process each event. On each iteration, the director will process all events with tags
that are equal to its tag (the “model tag”), and then advance its model tag and
perform a new set of matching events. Note that “model time” is not “real time.”
Model time starts from the time specified by startTime parameter, which has a
default value of 0.0. The stop time is specified by the stopTime parameter, which
has a default value of Infinity, meaning that the execution will run forever.

Execution of a DE model ends when the timestamp of the earliest event exceeds the
stop time. By default, execution also ends when the global event queue becomes
empty. To prevent ending the execution when there are no more events (if your
workflow relies on user interaction, for example), set the
stopWhenQueueIsEmpty parameter to false.

If the parameter synchronizeToRealTime iS Set to true, then the director will not
process events until the real time elapsed since the model started matches the timestamp
of the event. Synchronizing ensures that the director does not get ahead of real time;
however, synchronizing does not ensure that the director keeps up with real time.

The DE Director's timeResolution parameter is an advanced parameter that is only
useful when the DE workflow contains composite components. In general, leave the
parameter set to its default value ("1E-10")

For more information about the DE Director, see the Ptolemy Documentation. The
Ptolemy site also has a number of useful examples.

111

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/de/doc/body.htm

Section 5

5.2.4 Continuous Time

The Continuous Director is designed to oversee workflows that predict how systems
evolve as a function of time (i.e., "dynamic systems"). In Continuous workflows, the
rates of change of parameters are related to the current value or rates of change of other
parameters, often in complex and coupled ways that are described by differential
equations. For example, the change in the population of a predator and its prey over time
(described by the Lotka-Volterra equations), can be calculated using a Continuous
workflow (see Section 4.2.3). In general, Continuous workflows function much like
STELLA, a common commercial software package that calculates dynamic (or
continuous time) responses.

The Continuous Director keeps track of the "time" of each iteration as well as the time
between each iteration (the "time step™). By insuring that the time step is small enough,
the director can use simple extrapolations to estimate new values. The Continuous
Director then iterates the workflow enough times to reach the desired stop time. The
entire process is thus just numerical integration.

Figure 5.12 shows a simple workflow that uses the Continuous Director to calculate
resource-limited population growth. The integrand of the logistic equation that is
commonly used to describe resource-constrained population growth is entered into an
Expression actor. The output of the Expression actor (labeled Logistic Model) is
connected to the input of an Integrator actor, which calculates the population growth rate
at a future time (derived from the current time plus the time step specified by the director)
given the current rate of growth (output by the Expression actor). The output of the
Integrator is then connected back to the input of the Expression actor. This loop is then
iterated a number of times by the Continuous Director, numerically integrating the
differential equation.

112

Section 5

Continuous Director

TimedPlotter

initial population e initPop: 1.0

growth factor er: 2.6

carrying capacity e k: 100

Logistic Model Integrator

;* n*r*(1 - n/k)

Figure 5.12: A workflow using a Continuous Director.
The Continuous Director in the above example is set to integrate for 100 seconds. Using
the initial values for growth (r) and carrying capacity (k), the workflow calculates the
growth rate at later times and outputs a graph representing the results. The curve rises at a

rate determined by the growth rate, and then levels off at the carrying capacity (Figure
5.13).

— ' ~
(55? LogisticsModel_CT_Director. TimedP lotter [Z]@
File Tools Special Help R
d “ ~A
x10° TimedPlotter B |t 2

1.0 (2

08 [4

06 []

0.4r 4

0.2 7

0.0L J

1 1 1 1 1 1 1 1 1 1 1

0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0
¥10

Figure 5.13: Output of the resource-limited population growth workflow

113

Section 5

The Continuous Director calculates the size of integration steps in the numerical
integration and can be configured to use different extrapolation algorithms. How the
director performs the integration depends on the ordinary differential equation
(ODE) solver algorithm selected with the ODESolver parameter. By default, the
Continuous Director uses the ExplicitRK23Solver algorithm. The two available ODE
solver algorithms, ExplicitRK23Solver and ExplicitRK45Solver, have different
performance and accuracy characteristics depending on the function being
integrated. They are "variable-step-size" algorithms, which mean that the director
will change step sizes according to error estimation. For a detailed discussion of
these algorithms, see the Ptolemy documentation (Volume 3, Chapter 2).

In general, the relevance of the director's parameters varies depending on the type
of ODE solver algorithm selected. For both ExplicitRK23Solver and
ExplicitRK45Solver, the step-size will change based on the rate of change of the
original function's values (i.e., derivative values). In other words, time-steps within
an integration will change throughout the calculation, and the initStepSize is
used only as an initial suggestion.

Directors with variable-step-size algorithms use the maxStepSize and
minStepSize parameters to set upper and lower bounds for estimated step sizes.
These parameters are used for adjusting tradeoffs between accuracy and
performance. For simple dynamic systems, setting an upper bound with the
maxStepSize parameter helps ensure that the algorithm will use an adequate
number of time points. For more complex systems, the minStepSize ensures that
the algorithm will not gobble too many system resources by using increasingly
minute step sizes. The minStepSize is also used for the first step after
breakpoints.

The timeResolution parameter is also used to adjust the tradeoff between
accuracy and speed. In general, one would not change this parameter unless a
function is known to change substantially in times of less than the parameter's
default value, 1E-10 sec. The parameter helps ensure that variable-step-size
algorithms do not use unnecessarily small time steps that would result is long
execution times. Reducing the parameter's value might produce more accurate
results, but at a performance cost.

The errorTolerance parameter is only relevant to directors that use variable-
step-size algorithms. Workflow actors that perform integration error control (e.g.,
the Integrator actor) will compare their estimated error to the value specified by the
errorTolerance parameter. If the estimated error is greater than the
errorTolerance, the director will decide that the step size is inaccurate and will
decrease it. In most cases, the default value of the errorTolerance parameter
(1e-4) does not require change

114

Section 5

The startTime and stopTime parameters specify the initial and final time for the
integration. By default, the time starts at 0 and runs to infinity. Note: the
startTime and stopTime parameters are only applicable when the Continuous
Director is at the top level. If a Continuous workflow is contained in another
workflow, the Continuous Director will use the time of its executive director.

The maxIterations parameter specifies the number of times the director will iterate
to determine a "fixed point.” A fixed point is reached if two successive iteration steps
produce the "same" result.

Edit parameters for Continuous Director

.;u{: localClock: 0.0 (Configure]
- o
e startTime:

stopTime:
synchronizeToRealTime: |

initStepSize: 0.1

maxStepSize: 1.0

maxlterations: 20

errorTolerance: le-4

ODESolver: ExplicitRK23Solver - I
Cancel Yy £ Help) (Preferences) (Defaults) [Remove) [Add Y Commit

Figure 5.14: The Continuous Director parameters.

For more information about the Continuous Director, see the Ptolemy
documentation. The Ptolemy site also has a number of useful examples.

5.2.5 Dynamic Dataflow (DDF)

A DDF Director, like the SDF Director, executes a workflow in a single execution
thread, meaning that tasks cannot be performed in parallel as they can be under a
PN Director. Unlike the SDF Director, however, the DDF Director makes no attempt to
pre-schedule workflow execution, and data production and consumption rates can
change as a workflow executes. This flexibility permits very dynamic workflow
execution, and you will likely use this director for workflows that use BooleanSwitch
and DDFBooleanSelect actors to create control structures, but that do not require
parallel processing (in which case a PN Director should be used). In general, the DDF
Director is a good choice to use for managing workflows that use Boolean switches
for an if-then-else type constructs (Figure 5.15) and branching, or that require data-
dependent iteration (e.g., multiplying an input integer until the product is greater
than a set threshold—i.e., a "do while" loop).

115

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/continuous/doc/body.htm

Section 5

DDFDirector
ﬂ ®Sieps: 10

"Operabon on the THEN branch: " + input

DDFBooleanSelect

=0

~

ZEUI “Operation on the ELSE branch: * + input

’
'K Branching-ifthenetse DOF Display
Be Took beb
e g e
Operation on the THEN branch:
Operation on the ELSE branch:
Operation on the THEN branch:
Operavion on the ELSE branch:
Operation on the THEN branch:
Operation on the ELSE branch:
Operation on the TKEN branch:

B DM aw N

Operation on the ELSE branch: 8
|pperation on the THEN branch: 10
< | >

©
<

Figure 5.15: Using the DDF Director with a workflow that uses if-then-else type structure.

The workflow in Figure 5.15 uses a BooleanSwitch actor to direct its input to either an
"If* or an "Else" output, depending on the value of a token passed to the actor's
control port. Because the output of the BooleanSwitch ports is not constant
(sometimes the port will have output, sometimes not) the workflow cannot be run under
an SDF Director, which requires constant data rates. Either a DDF or PN Director can
handle variable data rates, and because the workflow does not require parallel processing,
the DDF Director is the better choice for this workflow.

Note that the workflow uses a DDFBooleanSelect actor specifically designed for DDF
workflows. This actor should be used under DDF Directors instead of the BooleanSelect
actor. Additional actors designed to work under DDF Directors, such as DDFSelect and
DDFOrderedMerge, can be instantiated using the Tools > Instantiate Component menu
option.

In Figure 5.15, the director's parameters are left at their default settings (Figure 5.16)

Edit parameters for DDFDirector
\:{/— iterations: 0|
maximurnFeceiverapacity : i}
runbntilDeadiockInonelteration: F
Zommit] [Add] [Remove] [Restore DeFauIts] l Preferences] l Help] [Zancel

Figure 5.16: The default parameters of the DDF Director.

116

Section 5

The iterations parameter is used to specify the number of times the workflow is iterated.
By default, this parameter is set to "0". Note that "0" does not mean "no iterations."
Rather, "0" means that the workflow will iterate forever. Values greater than zero specify
the actual number of times the director should execute the entire workflow.

By default, the value of the maximumReceiverCapacity parameter is 0, which
means that the queue in each receiver is unbounded. To specify bounded queues, set
this parameter to a positive integer. The DDF Director's third parameter,
runUntilDeadlockInOnelIteration, can only be selected if the DDF Director
is running a sub-workflow (i.e., you cannot turn this parameter on if the DDF
director is the workflow's top-level director). In general, when using DDF in
composite actors, it is useful to select this parameter to ensure that the
subworkflow sends out one token each iteration. When
runUntilDeadlockInOnelIteration is selected, the director will repeat the
basic iteration until deadlock is reached. Deadlock occurs when no active actors are
able to fire because their firing rules are not satisfied.

By default, the DDF Director uses a set of firing rules that determine how to execute
actors in a "basic iteration." Unlike the SDF Director, which calculates the order in
which actors execute and how many times each actor needs to be fired BEFORE the
director begins to iterate the workflow, the DDF Director determines how to fire
actors at runtime, and the number of tokens produced and output by each actor can
vary in each basic iteration. Users can ensure that a specified number of tokens are
consumed or produced by either (1) setting a parameter named
requiredFiringsPerIteration in workflow actors so that they are fired the
specified number of times in each iteration (e.g., a Display actor that should display
one token in each workflow iteration, or an actor that must output a single token to
a containing workflow on each iteration) or (2) by selecting the director's
runUntilDeadlockInOnelteration parameter, in which case, in each
iteration, the director will repeat the basic iteration until deadlock is reached.
Deadlock occurs when no active actors are able to fire because their firing rules are
not satisfied.

A simple example of a DDF sub-workflow contained by a PN workflow can be used
to illustrate the usefulness of user-defined requiredFiringsPerIteration
parameters and the DDF Director's runUntilDeadlockInOnelteration
parameter. In the example in Figure 5.17, a Ramp actor outputs the integers from 1
to 8 to a composite DDFActor. Opening the DDFActor reveals a simple DDF sub-
workflow that uses a relation to branch the input to two Expression actors: one
which simply passes the value true to a BooleanSwitch, the other which outputs a
string such as "This is string no 1" or "This is string no 2", etc. The output of the
DDFActor is then passed to a Display actor.

117

Section 5

PN Director ®Steps:8

DDFActor Display

%ﬂ’

2 “This Is string no.” +in

Boovh:un Swilch out

Figure 5.17: A DDF sub-workflow contained in a PN workflow.

The expected output of the workflow in Figure 5.17 is a "list" of all eight strings
generated by the DDFActor ("This is string 1", etc). However, when the workflow is run
using the default actor and director settings, the following output is produced (Figure
5.18)

'K _DDFtest3.Display M= <]

File Tools Help

Thiszs is string no.
Thiz i= string no.
Thiz is string no.

o

This is string no.

Figure 5.18: Output of the workflow displayed in Figure 5.17 when all actor and director parameters use
default settings

What happened to strings 5-8? The answer lies in how the DDF Director determines
which actors to fire and when. In this case, the input comes from the containing

118

Section 5

workflow, and all eight values are passed to the sub-workflow correctly. Listening to the
DDF Director during execution reveals that the expressions are fired in one iteration and
that the last Boolean Switch is fired only in the next iteration (thus emitting a token every
two iterations). In other words, one iteration is not a "full iteration” of the DDF
subworkflow.

To ensure that the BooleanSwitch actor iterates and that the sub-workflow completes its
task, one of the following techniques can be used:

1) Add a requiredFiringsPerIteration parameter to the BooleanSwitch actor
specifying the number of tokens it must consume at each iteration. To add the
new parameter, right-click the BooleanSwitch actor and select Configure Actor.
Click the Add button and enter the name and value of the new parameter (Figure
5.19)

-,

Add a new parameter to .DDFtest3.DDFActor.BooleanSwitch

P
m:r} Marne: requiredFiringsPerTteration
Defaulk valus:)
Class: ptalery.data,expr. Parameter
[il l[Cancel]

Figure 5.19: Adding the requiredFiringsPerIteration parameter.

Click OK to save the new parameter and then Commit to save the changes.
When you rerun the workflow, the output should now be as expected (Figure
5.20).

K DD Ftest3.Msplay g@ﬁ

File Tools Help

-

This is string no.
Thiz iz string no.
This is string no.
This i=s string no.
Thiz is string no.
This is string no.
Thiz iz string no.

oM -1 & on ok W

hhis iz string no.

Figure 5.20: The output of the example workflow once a requiredFiringsPerIteration
parameter has been added to the BooleanSwitch actor.

119

Section 5

Alternatively you can

2) Turn on the DDF Director's runUntilDeadlockInOneIteration
parameter. To turn on this parameter, double-click the director and check
the box beside the parameter name (Figure 5.21).

=]

Edit parameters for DDF Director
_? / iterations: 0
maximumReceiverCapacity: 0
runUntilDeadlockInOnelteration:
[Commit] [Add] [Remove l [Restore Defaults] ’ Preferences] ’ Help] [Cancel

l

Figure 5.21: Turning on the DDF Director's runUntilDeadlockInOnelteration parameter.

Once this parameter is on, the DDF Director will, for each iteration, repeat the basic
iteration until deadlock is reached. Deadlock occurs when no active actors are able
to fire because their firing rules are not satisfied. Running the workflow again with
the runUntilDeadlockInOnelteration parameter selected will produce the
expected results (Figure 5.20)

For more information about the DDF Director, see the Ptolemy documentation. The
Ptolemy site also has a number of useful examples.

5.3 Using Existing Actors

Kepler comes with a standard library of over 530 actors that can perform tasks such
as connecting to a database, executing a UNIX command, displaying images and
maps, or transforming data from one type to another. Existing actors can be
customized in several ways: via parameters, additional ports, and a user-defined
label. See Chapter 3 for more information about these features.

Users can select and use actors from the standard component library, the Kepler
Repository, or from collaborators who make actors available online or simply email
a component for immediate use. The following sections discuss each of these
options in greater detail.

5.3.1 Using Actors from the Standard Component Library

All actors that are included in the Kepler standard component library appear in the
tree in the Components area. Double-click an actor directory to open it (or double-
click an open directory to close it) and navigate to the desired component, or use the

120

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/ddf/doc/body.htm

Section 5

Search field at the top of the library to locate the component directly (see Section
4.5.2 for more information about searching for components). To search only the
local library, make sure no Remote repositories are marked ‘Search’ in the Tools >
Preferences > Components tab.

To use an actor from Kepler's standard component library, simply drag-and-drop
the actor from the library onto the Workflow canvas. All of the actors in the library
have been tested and are ready to be incorporated into workflows.

To read more about an actor before instantiating it on the Workflow canvas, right-
click the actor and then click View Documentation (Figure 5.22). Kepler will open a
documentation screen containing information about the actor.

800 Unnamedl
@@ e bl mmwic> i e

[Components | Data Outline] N Workflow
Search Components

' Q, Binary File] E Search 3

(" Advanc..) [sources) [Cancel)
S v L o S -

[All Ontologies and Folders)ﬂ

. Search Results
¥ L Components
¥ Data Input
¥ Local Input
¥ Data Output
¥ Local Output
" Binary File Writer
v Actors-2_0
¥ 1 BinaryFileReader, kar

View Documentation
View LSID
|

B results found.

F i -

Figure 5.22: Viewing information about an actor in the Component library.

5.3.2 Instantiating Actors Not Included in the Standard Library

If you cannot locate a component in the standard library, but you know its class
name—which might be the case with a Ptolemy actor that is not included in the
standard library—you can instantiate the actor using the Instantiate Component
item in the Tools menu (Figure 5.23). Instantiating an actor is the same as dragging
an actor from the actor tree to the Workflow canvas. Components can be

121

Section 5

instantiated either with a class name or via a URL. Note that instantiation of an actor
from a URL only works for Composite actors made from actors already in the
standard actor library. Instantiated components will appear on the Workflow
canvas.

Kepler File Edit View WnrkﬂnwWindnw Help

800 | Animate at Runtime... b
|||@|@||a|>|llr.]»|- Listen to Director
(Components | Data Outline] SRR L= E Workflow
Expression Evaluator
Search Components Instantiate Component
Q \ (P—) Instantiate Attribute
Check System Settings
(" Advanc..) (" Sources) (Cancel) Ecogrid Authentication
[All Ontologies and Folders =4 l Preferences
=] Text Editor
» (3 Projects Module Manager...
> [3 statistics T
> Actors-2_0 _ B
» OO Instantiate Entity
=
» Class name: ’|
Location (URL):
(_ Cancel J‘ [OK)
0 resu|

| N

Figure 5.23: Instantiating a component via the Tools menu item.
The class name of each actor is displayed in the documentation. For example, to see

the class name of the Constant actor, right-click the actor and select Documentation
> Display (Figure 5.24).

122

Section 5

|K! Documentation for ..Constant

~

X

B[=)

File Tools Help

Constant (Instance of ptolemy.actor.lib.Const)
ngger, cm&‘?{n‘fu
s The Constant actor outputs a constant, which is specified by the value parameter. By
Ty et o s areerceen s || T, the actor outputs the integer 1.
SoTante Ty ot 11 Lrmsat OaTost onte 2 180N
W LT b Sl oot o b 6911
The actor can he used to output other types of values, e.g., a string {such as "Hello") ora
douhle (such as 1.2). The actor' s output type matches the type of the specified value.
MNOTE: If using a PN Director, use the SingleFireConstant actor instead of the Constant
actor.
)
Parameters
vaiue The value produced by the Constant actor. By default, the value is the integer token 1. The value can bhe
setto another type, e.q., a string (such as "Hello") or a douhle {such as 1.2). The output type matches
the type of the value specified here. =
class MNo description.
semanticType000 No description.
semanticTyped 11 No description. e
kar Mo description.
Input Ports
Author: null (Cfass author: Yuhong Xiong, Edward A. See Also:
Lee # Class Documentation
Version: null # Notused in any demos

Figure 5.24: The class name of the Constant actor.

The online Ptolemy code documentation contains the actor class name near the

top of each page (Figure 5.

25). For example, use the class name:

ptolemy.domains.continuous.kernel.ContinuousIntegrator

to instantiate the Continuouslntegrator actor on the workflow canvas.

123

http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/doc/codeDoc/index.html

Section 5

&« C M [ptolemy.eecs.berkeley.edu/ptolemyll/ptillatest/ptll/doc/codeDoc/index.html

[9Javal.6 APl [Prolemy APl W PostgresqL [MysaL (i Local
ptolemy.distributed.common -

ptalemy.distributed.domains.sdf.kernel Overview Package [{75] Tree Deprecated Index Help 13
ptolemy.distributed.rmi PREV CLASS MEXT CLASS FRAMES NO FRAMES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ptolemy.distributed. util
ptolemy.domains.ci.kernel
ptolemy.domains.ci.lib
ptolemy.domains.continuous. kernel 0

tolemy.domains.continuous.kernel.solver:
ptolemy.domains.continuous.lib

ptolemy.domains.continuous kernel

Class ContinuousIntegrator

ptolemy.domains.csp.kernel java.lang.Object
ptolemy.domains.csp.lib L ptolemy.kernel.util.Namedobj
2 L ptolemy.kernel.Instantiabl 0bi
ptolemy.domains.ct.kernel.solver Y L ptolemy.kernel.Entit
| Zmoommmmemonne y4]> L ptolemy.kernel.c LEntity
R N L . . :
ptolemy.domains.continuous.kernel .
Interfaces ptolemy.domains.continucus.kernel.ContinuousIntegrator
ContinuousStatefulComponent
ContinuousStepSizeController All Implemented Interfaces:

Classes java.io.Serializable, javalang.Cloneable, Actor, Executable, FiringsRecordable, Initializable, TypedActor, ContinuousStatefulC
ContinuousDirector Changeable, Debuggable, DebugListener, Derivable, Instantiable, ModelErrorHandler, MoMLExportable, Moveable, Nameab
Continuouslintegrator
Continuousintegrator.IntegratorCausalityinte | Direct Known Subclasses:
ContinuousODESolver Integrator

ContinuousScheduler

Figure 5.25: Online Ptolemy documentation contains the class name of each component near the top of
each page. Use the class name to instantiate the component in Kepler.

Note that actors that are instantiated from the Tools menu are placed on the
Workflow canvas, but are not added to the local library. See Section 5.3.5 for
information about saving actors to the local library.

5.3.3 Using the Kepler Analytical Component Repository

The Kepler Analytical Component Repository contains components in a remote
library hosted on the EarthGrid. Users can upload and download workflow
components from this centralized server, and these components can be searched,
downloaded (or uploaded), and used via the Kepler interface.

To search for components in the repository, first select the ‘remote’ repositories
you'd like to search from the Tools > Preferences > Components tab, and then type
the name of the required component in the search field (Figure 5.26). The
component will automatically download when a user drags and drops the search
result onto the Workflow canvas. If the found component is a KAR, it may be
downloaded into your local ‘Save’ repository (also configured in the Components
Preferences tab), and by default this is KeplerData/MyWorkflows/.

124

Section 5

{Eﬂmpﬂnﬂnts ' Data Outline ! ,

Search Components

) _‘}[Search)

[Advanced...:] (SDUH:ES:] : Cancel

| All Ontologies and Folders B

IE Components
IE Projects

> IE Statistics
Actors
Dataturbine
Directors
Opendap

R
MyWorkflows

¥ ¥ rv¥y¥yrwr

0 results found.
Figure 5.26: Search field for local and remote components.

Note that actors that are downloaded from the repository are instantiated on the
Workflow canvas, but are not added to the local library. See Section 5.3.5 for
information about saving actors to the local library.

To add a new component to the repository where it can be used by other workflow
designers:

1. Make sure that your actor has a unique and descriptive name. Right-click the
actor and select Customize Name to supply a name.

2. Right-click the actor and select Upload to Repository from the menu (Figure
5.27). Enter a username, password, and organization OR, if you do not have a
user account, click the Login Anonymously button to upload the actor
without credentials. To obtain log-in credentials, please register for a KNB
account at KNB.ecoinformatics.org.

125

Section 5

ActorDesignedForWorkfiow

i[‘j Configure Actor =t
= Customize Name
Configure Ports o LDAP Login =Jo/&3

Configure Units
Open Actor L Usermaste:
Cet Metadata

Dowumentation ’

Password:

Listen to Actor Crganzation: | NCEAS v[

Suggest ’ i { :
Semantic Type Annotation... | r"“ l l Cancel J |__Login Ancrrymousty

Save Archive (KAR)...

Upload to Reposito

View LSID
Preview
Appearance ’

Figure 5.27: Uploading actors to the Kepler Repository. Right-click the actor and select the Upload to
Repository menu item (left). Log in to the Kepler Repository using the pop-up authentication dialog

(right).

3. Click "Yes" in the dialog box that asks whether the component should be
publicly accessible in the library. Each component must have a unique Life
Science Identifier (LSID), which identifies it. The system will automatically
assign an LSID if necessary. A confirmation screen appears when the upload
is complete.

5.3.4 Saving Actors to Your Library

The local Kepler library, which is accessed in the Components tab can be customized
with additional actors and other components. To add actors to the local library,
simply right-click the new actor and select “Save Archive (KAR)”. If the KAR file is
saved into a configured local repository folder, e.g. the “MyWorkflows” directory, it
will be displayed automatically in the actor library. (Figure 5.28 and 5.29).

126

My Binary File Reader

>

P Configure Actor

=

Customize Name
Configure Ports
Configure Units
Open Actor

Cet Metadata
Documentation

Listen to Actor
Suggest

Upload to Repository
View LSID

Preview

Appearance

3#E

3L

Semantic Type Annotation...

Save Archive (KAR)...

Figure 5.28: Saving an actor to your local library.

[All Ontologies and Folders

)

>
>
>
>
>
[2
v

Statistics

|| Actors

|| Dataturbine

|| Directors

|| Opendap

5 R

|| MyWorkflows

b [kepler21 092110,kar

¥ 1l My Binary File Reader kar

Binary File Reader

F Y

v

Fingre 5.29: A modified Binary File Reader actor saved to the local library.

Section 5

127

Section 5

5.3.5 Importing Actors as KAR Files

Actors are stored as KAR (Kepler Archive Format) files, which allow them to be
easily transported, shared and archived. To save an actor as a KAR file:

1. Right-click the actor on the Workflow canvas and select Save Archive (KAR)...
from the menu.

2. Choose a save location and file name for the KAR file and click Save.

3. The actor will be saved as a KAR file. Note: if the actor has been compiled
from new source code available only on the local machine, you must follow
several additional steps when creating a KAR file. See the Appendix 1,
Creating Your own Actor for more information.

KAR files can be emailed, posted on Web sites, or otherwise shared with other users.
To open a KAR file into Kepler, use the Open... option of the File menu in the Menu
bar.

5.3.6 Actor Icon Families

Each Kepler actor belongs to a family—a group of similar actors, often designated with a
common icon or symbol. Some families, like Display or Math, contain sub-families,
which are also identified with a common visual element. The actor icons, which appear in
the Components area as well as on the Workflow canvas, identify the function of each
actor.

Each icon can represent either an actor or a composite actor, depending on the number of
teal "rectangles." In general, an actor is represented by a single teal rectangle and a
composite actor is represented by two overlapping teal rectangles (Figure 5.32). Both
actors and composite actors appear in the component library and can be used in
workflows.

. |

Basic actor icon Basic composite actor icon

Figure 5.30: Basic actor and composite actor icons

The following table lists each actor family and sub-family, as well as the icon used to
represent it.

128

Section 5

Array actors are indicated with a curly brace. Actors belonging to
this family are used for general array processing (e.g., array sorting).

—E
D
2~<

Array
Accumulator

Array Accumulator actors read an array and output a

string containing the array elements. Actors:
ArrayAccumulator

them in either ascending or descending order (e.g., from

- Array Array Average actors read an array of values and output
{ X } Average the average of the values
Actors: ArrayAverage
Array Array Contains actors read an array and determine
Contains whether a specified element is contained in it. The actors
{ 0.} output a Boolean value: true if the element is contained
in the array, false if not.
Actors: ArrayContainsElement
Array Dot | Dot Product actors read either two arrays or two
{ o] Product matrices of equal length and compute and output their
dot product.
Actors: DotProduct
Array Length | Array Length actors read an array and output the
{ 0' } length of the array.
Actors: Arraylength
Array Max Array Max actors read an array of elements and output
@ the value and the index of the largest element.
Actors: ArrayMaximum
Array Min Array Min actors read an array of elements and output
@ the value and the index of the smallest (i.e., closest to
minus infinity) element.
Actors: ArrayMinimum
Array Sort Array Sort actors read an array of values and output

AtoZorZtoA).
Actors: ArraySort

°

General Array
Processing

General Array Processing actors are used to perform a
wide variety of array manipulations—from extracting a
specified array element, to outputting the indices of peak

array values.
Actors: ArrayElement, ArrayExtract, ArrayLevelCrossing,
ArrayPeakSearch, ArrayRemoveElements, ArrayPermute

Control actors do not have a persistent family symbol. These actors
are used to control workflows (e.g., stop, pause, or repeat).

Q)
o
>
—+
=
=k

General
Workflow
Control

General Workflow Control actors are used to stop,

pause, delay, repeat, or branch a workflow.

Actors: Pause, Stop, Repeat, SampleDelay, Case, IterateOverArray,
TokenToSeparateChannelsTransmitter, ThrowException,
ThrowModelError, MessageDigestTest, NonstrictTest, Test,
TypeTest

129

Section 5

Data/File
Access

Data/File Access actors do not have a persistent family symbol.
Actors belonging to this family read, write, and query data.

Data Access
Support

Data Access Support actors are generally used to open
and close database connections, or to send commands to
a data source.

Actors: CloseDatabaseConnection,
SRBConnect,
SRBCreateQuerylnterface,
SRBProxyCommands, PhyloDataReader

OpenDatabaseConnection,
SRBCreateQueryConditions,
SRBGetPhysicallLocation,

&l (@

Data Query

Data Query actors query data sources or metadata.
Actors: DatabaseQuery, SRBQueryMetadata,
TransitiveClosureDatabaseQuery

or

Reads/Gets/
Sources

Reads/Gets/Sources actors read data into a Kepler

workflow: files, images, or data sets.

Actors: BinaryFileReader, ExpressionReader,
FileToArrayConverter, ImageReader,
SimpleFileReader, NexusFileReader,

EML2Dataset, OrblmageSource, OrbPacketObjectSource,
SRBGetMetadata, SRBSGet, SRBStreamGet, DataTurbine,
OpendapDataSource

FileReader,
LineReader,

Read/Write

Read/Write actors read and write data from host servers.
Actors: FTPClient, EcogridWriter, DataGridTransfer

Write/Put/
Sink

Write/Put/Sink actors write data to output files or sinks,
which store data for future use.
Actos: BinaryFileWriter, FileWriter, LineWriter, TextFileWriter,
OrbWaveformSink, OrbWaveformSource

Data
Processing

Data Processing actors do not have a persistent family symbol.
Actors belonging to this family assemble, disassemble, extract, and

convert data.

Data
Processing

Data Processing actors process data—converting data
from one format to another or extracting specified

values from a data set.

Actors: ClimateChangeFileProcessor, ClimateFileProcessor,
SProxy, ExperimentMonitor, XpathProcessor, XSLTProcessor,
Interpolator, LookupTable, RecordAssembler, RecordDisassembler,
RecordUpdater, VectorAssembler, VectorDisassembler,
PolygonDiagramsDataset, PolygonDiagramsTransition, PAUPInfer,
RecIDCM3, TreeDecomposer, Treelmprover, TreeMerger,
TreeParser

130

Section 5

Director

Stand-alone component that directs the other components (the
actors) in their execution

A

Director

Each of the directors packaged with Kepler (SDF, PN,
DDF, Continuous, CT, and DE) has a unique way of
instructing the actors in a workflow. For more

information about which director to use, see Section 5.2.
Directors: CT Director, Continuous Director, DE Director, DDF
Director, PN Director, SDF Director

Display actors are indicated by vertical bars. Actors belonging to this
family display workflow output in text or graphical format.

Display
Array/Matrix | Array/Matrix Display actors accept matrix and/or array
m Display tokens and display them in a scrollable table format.
Actors: MatrixViewer
Browser Browser Display actors read a file name or URL and
Display display the file in the user's default browser. Some
browser display actors allow users to interact with
the displayed content during workflow execution.
Actors: BrowserDisplay, BrowserUlI
GIS/Spatial GIS/Spatial Display actors display geospatial data.
m Display Actors: ESRIShapeFileDisplayer, GMLDisplayer
Graph Graph Display actors plot data sets and display the
Display results. Some of the actors use R, a language and
environment for statistical computing and graphics.
Graph Display actors that use R indicate so on the icon.
Actors: ArrayPlotter, BarGraph, ENMPCP, SequencePlotter,
TimedPlotter, TimedScope, XYPIlotter, XYScope, Barplot, Boxplot,
Scatterplot
Image Image Display actors display image files.
m Display Actors: ImageDisplay, ImageJ, ShowLocations, TreeVizForester
Table Display | Table Display actors display information in tabular
I%I format.
I T I Text Display | Text Display actors display textual output.

Actors: Display, MonitorValue

File
Management

File Management actors do not have a persistent family symbol.
Actors belonging to this family locate or unzip files, for example.

»

Directory
Listing

Directory Listing actors read a local or remote directory
name, and output an array of file and/or folder names

contained by that directory.
Actors: DirectoryListing

131

Section 5

File Locator | File Locator actors locate files from a file system.
File File Management actors copy, move, fetch, and put files
Management | and directories on local and remote hosts.
Actors: DirectoryMaker, RandomDirectoryMaker, FileCopier, FileCopy,
GenericFileCopier
Zipped Files | The ZipFiles actor 'zips' multiple files into a single

zipped archive.
Actors: ZipFiles

GAMESS actors are used for computational chemistry workflows.

@ : D008

GAMESS
Actors/Comp
utational
Chemistry

GAMESS actors perform a broad range of quantum
chemical computations. For more information about
GAMESS, see http://www.msg.ameslab.gov/GAMESS/

Actors: QMViewDisplay, Babel, OpenBabel, MoleculeSelector,
GamessinputGenerator, GamessLocalRun, GamessNimrodRun,
DataGroup, EndGamessinput, FormattedGroup, KeywordGroup,
StartGamesslnput, FileExistenceMonitor, FileListSequencer,
FileLocationChooser, FileNameChooser,
GamessAtomDataExtractor, GamessKeywords,
MoleculeArrayProducer, TemporaryScriptCreator

General

Actors that don't fit into one of the other families fall into the
General family. General actors include email, file operation, and
transformation actors, for example.

Computation

Computation actors are used to perform calculations.

Email Email actors send email notifications from a workflow
to a specified address.
Actors: EmailSender

Filter Filter actors "filter" information, allowing users to
select specific data from a data set.
Actors: FilterUl

Timers or | Timers or Time actors output the current time.

Time Actors: CurrentTime, TimeStamp, CreateDate, DateDifference,

DateToString, RandomDate

Transformation

Transformation actors transform data from one type to

another.

Actors: URLToLocalFile, StringToXML, XMLToADNConverter,
BooleanToAnything, ExpressionToToken, LongToDouble,
ObjectToRecordConverter, TokenToExpression,
TokenToStringConverter, UnitConverter, XMLToADNConverter,
ConvertURLTolmage, CartesianToComplex, CartesianToPolar,
ComplexToCartesian, ComplexToPolar, PolarToCartesian,

132

Section 5

PolarToComplex, ArrayToElements,
ElementsToArray, SequenceToArray, StringToN

ArrayToSequence,

GIS/Spatial
Processing

GIS/Spatial actors are used to process geospatial information.

GIS/Spatial
Processing

GIS/Spatial Processing actors are used to map and

manipulate geospatial data.

Actors: AddGrids, ConvexHull, CVHullToRaster,
GDALFormatTranslator, GDALWarpAndProjection, Get2DPoint,
GetPoint, GrassBuffer, GrassHull, GrassRaster, GridOverlay,
GridRescaler, MergeGrids, PointlnPolygon, PointlnPolygonXY,
Rescaler, StringToPolygonConverter, Interpolator,
GARPPrediction, GARPPresampleLayers, GARPSummary,
GridRescaler, GridReset, Rescaler

Image
Processing

Image Processing actors have no persistent family symbol. Actors
belonging to this family are used to work with graphics files.

Image
Processing

Image Processing actors are used to manipulate and
convert image files.

Actors: ASCToRaw, ConvertimageToString, IJMacro,
ImageContrast, ImageConverter, ImageRotate,
StingTolmageConverter, SVGConcatenate,

SVGToPolygonConverter

Logic

Logic actors have no persistent family symbol. Actors in this family
include Boolean switches and logic functions.

Boolean
Accumulator

The BooleanAccumulator actor reads a sequence of
Boolean values and outputs one Boolean value from

their combination.
Actors: BooleanAccumulator

Boolean Boolean Multiplexor and Switch actors determine which
1 Multiplexor/ | of two or more input values to output. These actors are
’-_ Switch useful when creating workflow control structures, which
! allow workflows to branch, for example.
Actors: Boolean Multiplexor, Switch
Boolean The BooleanSwitch actor reads a value of any type and
r Switches routes it to either a "true” or "false" port.
= Actors: BooleanSwitch
F
Comparator The Comparator actor reads two values and compares

them. The actor outputs a Boolean value (true or false)
that indicates whether the comparison criteria were met

133

Section 5

or not.
Actors: Comparator

I
I
=<

Equals The Equals actor compares values to see if they are

equal.
Actors: Equals

Is Present? The IsPresent actor outputs “true™ or "false” depending
on whether it has received a data token or not.

Actors: IsPresent

>
Bl |

Logic The Logic Function actor performs a specified logical

Function operation (e.g., "and" or "xnor").
Actors: LogicFunction

sl e
|

Select Select actors select and output a token from among

received input tokens.
Actors: Select, DDFBooleanSelect

Math actors have no persistent family symbol. Actors in this family
include add, subtract, integral, and statistical functions.

Absolute The AbsoluteValue actor reads a scalar value (e.g., an

Value integer, double, etc) and outputs its absolute value.
Actors: AbsoluteValue

Accumulator | The Accumulator actor outputs the sum of its received

inputs.

Actors: Accumulator
Add or | The AddOrSubtract actor adds and/or subtracts received
Subtract values.

Actors: AddOrSubtract

Average The Average actor outputs the average of the values it

receives via its input port.
Actors: Average

Constants The Constant actor outputs a constant, a string or any

other data type.
Actors: Constant, StringConstant

QD
—
>

S

Counter Counter actors increment or decrement an internal

counter.
Actors: Counter, TokenCounter

134

Section 5

Differential The DifferentialEquation actor reads differential
dy Equation equations, subtracts the current equation from the
/ ox previously received one, and outputs the difference.
Actors: DifferentialEquation
Expression The Expression actor evaluates an expression (e.g., an
Stand-alone addition or multiplication operation) specified in the
white box Ptolemy expression language.
Actors: EXpI’ESSiOH
Integral The Integrator actor are used with the CT or Continuous
directors to help solve ordinary differential equations
Actors: Integrator, Continuousintegrator
Limiter The Limiter actor reads a scalar value and compares it to
the top and bottom value of a specified range.
l Actors: Limiter
Maximum The Maximum actor reads multiple scalar values and
outputs the maximum value.
maxﬂ Actors: Maximum
Minimum The Minimum actor reads multiple scalar values and
. outputs the lowest value.
Actors: Minimum
Multiply or | The MultiplyOrDivide actor multiplies and/or divides
E Divide received values.
Actors: MultiplyOrDivide
Ramp The Ramp actor is the equivalent of the "for loop™ in
n Function many traditional computer languages.
Actors: Ramp
Random The Random actors generate or select one or more
- Number random values.
2|S Generators
Actors: Bernouli, DiscreteRandomNumberGenerator,
GaussianDistributionRandomNumberGenerator,
RicianDistributionRandomNumberGenerator,
UniformDistributionRandomNumberGenerator, = RandomNormal,
RandomUniform, RandomDate
Remainder The Remainder actor receives an input value, divides the
value by a specified divisor, and outputs the remainder.
Actors: Remainder
Round The Round actor rounds a number using a specified

rounding function.

135

Section 5

Actors: Round

round()

Scale The Scale actor reads any scalar value that supports

C multiplication (e.g., an integer, double, array, matrix,
X etc), and outputs a scaled version of the value.
Actors: Scale

Signal Signal Processing actors generate or manipulate signals.
- Processing
/\/ Actors: Sinewave

Statistics Statistics actors organize and analyze data in a variety of

b2

-FH
@]

ways.

Actors: Quantizer, ANOVA, Summary, SummaryStatistics,
Correlation, Regression, LinearModel, RMean, RMedian

Trig Function

The TrigFunction computes a specified trigonometric
function.
Actors: TrigFunction

Other/Exter

Other/External Program actors are indicated by a purple rectangle.
External Program actors include R, SAS, and MATLAB actors.

General General External Program actors execute UNIX

External commands or create UNIX shells from a workflow.

Program Actors: ExternalExecution, InteractiveShell, SSHToExecute,
UserlnteractiveShell

R R actors use R, a language and environment for

statistical computing and graphics.

Actors: ReadTable, Summary, RandomNormal, RandomUniform,
ANOVA, Correlation, LinearModel, Regression, RMean, Rmedian,
Rquantile, Summary, SummaryStatistics, Barplot, Boxplot,
RExpression, Scatterplot

String actors h

ave no persistent family symbol.

string()

String

String actors are used to manipulate and work with
strings in a variety of ways.
Actors: StringAccumulator,

StringFunction, StringlndexOf,
StringSplitter, StringSubstring,

StringCompare,
StringMatches,
StringTolnt,

StringLength,
StringReplace,
StringToLong,

StringToN, StringToXML,

Unit systems are indicated with a blue oval.

C w - S
=) S, I £

—+ S v

wn o) 3

)

=

Q

S

Units

Units are parameters that define a unit system that

consists of a set of base and derived units.
Actors: BasicUnits, CGSUnitBase, ElectronicUnitBase, SI

136

Section 5

Utility Utility actors have no persistent family symbol.
Utility Utility actors help manage and tune a particular aspect
-3 of an application.
Actors: VariableSetter, ExperimentPreparator, ExperimentStarter,
ForkResourceAdder, TokenDuplicator, Recorder, GUIRuUnCIPRes,
Initializer, SubsetChooserActor, TreeToString
Web Service | Web Services actors are indicated by a wireframe globe. Actors in

this family execute remote services.

Web Service

Web Service actors are used to invoke a Web service,
allowing wusers to take advantage of remote
computational resources.

Actors:, ServerExecute, SoaplabAnalysis,
SoaplabChooseOperation, SoaplabChooseResultType,
SoaplabServiceStarter, WebService, WMSDActor

Table 5.1: Actor icons

5.4 Using Composite Actors

Composite actors, or actors that contain sub-workflows, are commonly used in
Kepler. These actors—much like document outlines that can be opened or collapsed
to show or hide increased levels of detail--simplify workflows by concealing some of
the complexity. Composite actors are reusable components that perform a
potentially complex task. The details of the process used to carry out the task are
revealed when a user is interested in the minutia and elects to open the composite
actor to view its inner workings.

Composite actors are easily spotted by the double teal rectangle that represents
them on the Workflow canvas (Figure 5.32).

137

Section 5

SDF Director

Gene Accession Number

[> AAD4S112 XML Entry Display

Sequence Getter Using XPath Sequence Display

Errors Sink HTML Generator Using XSLT

o npu praa ou

Figure 5.31: An example of a workflow that uses two composite actors (Sequence Getter Using XPath and
HTML Generator Using XSLT). The above workflow, 6-WebServicesAndDataTransformation.xml, is
included with the Kepler release in the demos/getting-started directory.

HTML Display

The workflow in Figure 5.32 uses two composite actors to perform workflow steps
that are identified as "Sequence Getter Using XPath" and "HTML Generator Using
XSLT". To see how the composite actor carries out these steps, simply right-click the
composite actor and select Open Actor from the menu. A new application window
opens, with the sub-workflow contained by the composite actor displayed on the
Workflow canvas (Figure 5.33).

138

Section 5

™
K file:/C: fkepler 20070716/demos/getting. - .mation.xmi#Sequence Getter Using XPath JoEd
Fle Edit view wWorkflow Took Window Help

eaFaPlil@Pmpd[-Ce

[Components ~ Data Outline 1 ~
Starch Components .

Qcompor eActor (Cwwaren) Y0 Eckyof Gane

At) Sources
All Ontedogiel and Foldery s

S breh Ra ity
* L) Componerts Remowe First Line

¥ Gesersl Porpise inputreplaceFirst{"(?s Ji<WDOCTYPE.+?1>", ™)

W Compiniinhcior
¥ Berfion
This workflow extracts the "SEQUENCE" elements from an XML document and
" returns an array of these values on the output
.
T Y
Author: lkay Altintas, May 2006, SDSC
JD results found.
.
- -
M B d™ & ivemetiphrer +| [Deshtop 9] 5.0BuildingWorkflo.. % Adabe Photoshop BB C:UWINDOWS\syst... B dava(T) Flstiy

Figure 5.32: The inner workings of the Sequence Getter Using XPath composite actor.

5.4.1 Benefits of Composite Actors

In addition to simplifying workflows so that they can be more easily understood,
composite actors bring a number of other benefits to Kepler: they can be easily
reused and updated, they can be saved to the local component library or uploaded
to the Kepler Repository where they can be shared, and they can contain other
composite actors.

Scientists and other workflow designers can use composite actors to execute a task
by combining existing analytical components rather than creating a new actor from
scratch, which requires knowledge of Java. When composing composite workflows,
scientists simply "wrap up" existing actors into a functional unit that performs a
typical task.

Kepler uses two types of composite actors: opaque and non-opaque (or
"transparent”). A sub-workflow that contains its own director is called an opaque
composite. Non-opaque composites do not contain a director, and instead "inherit"
their director from the containing workflow.

139

Section 5

5.4.2 Creating Composite Actors

A composite actor can be created in one of two ways: either by dragging-and-
dropping a CompositeActor from the component library onto the Workflow canvas
and then customizing it, or by selecting existing components from the Workflow
canvas and selecting Create Composite Actor from the Tools menu. We will go over
both methods in this section.

To create a composite actor using the CompositeActor:

1. In the Components area, search for CompositeActor. Drag and drop the
CompositeActor to the Workflow canvas.

2. Right-click the CompositeActor and select Open Actor from the menu. A new
application window opens with a blank Workflow canvas (Figure 5.34). Use
this canvas to construct the sub-workflow contained by the CompositeActor.

?’ 0.0 Unnamed1#CompositeActor
& | @[]0 11|@] = su[2> 5[0 &
[Components Data Outline | , Workflow
Search Components
' CompositeActor) (L"") .YaXe) Unnamed L#CompositeActor]

@@ K QP> || @]m |25 [1]5] &

Advanc.. Sources Cancel
[Components | Data Outline N [Workflow |

| All Ontologies and Folders e 1

Search Components

. Search Results
v L Components
¥ General Purpose
L Jcomposicecor]
¥ Workflow
i CompositeActor
v Actors-2_0
¥] CompositeActor,kar
i] CompositeActor
¥ 1l CoreActors,kar
i] CompositeActor
4 results found.

CompaositeActor

|

e
Q Search

Composite Actor

.
1

Configure Actor

Customize Name

Configure Ports

Configure Units

Get Metadata

Documentation »

/

Listen to Actor

Suggest 3
Semantic Type Annotation...
Save Archive (KAR)...

Upload to Repository

View LSID

Preview

Appearance 3

\f

where the sub-workflow can be composed.

“ |
Figure 5.33: Right-click the CompositeActor and select Open Actor to open a blank Workflow canvas

140

Section 5
3. Drag and drop the components needed to compose the sub-workflow onto
the CompositeActor Workflow canvas. Connect the components. The example

in Figure 5.35 contains a sub-workflow that can be used to add two constants

and display the sum in a text window.
L,] I
e I Vew worlflow Tok Widow Helb
QAP O mipdhoe
-,,, . 1 = Unnwmse 84 cmpornieActoe
w——rerw 7 [e Wison Took i 9%
| O | oo | QAE QDD HOS RS0
&__‘u Reset -I ‘‘‘‘‘‘‘‘ Oota {
[‘:rm“n-ls s b
> @ Crmunmes '
B Composteicter

B Dt sedonpostaicton
@ worhiom

S rests found.

CompositeActor

\

|

|

ﬁ \
- |

) ren s fourd

00000

Add of Sublract
Constan2

Display

Figure 5.34: Adding a sub-workflow to a CompositeActor.

and selecting Open Actor from the menu.

4. Once the sub-workflow has been composed, close the sub-workflow canvas
The sub-workflow can be accessed again by right-clicking the CompositeActor

MakeSum). Click Commit.

5. Right-click the CompositeActor and select Customize Name from the menu.

Select a unique and descriptive name for the Composite actor (e.g.,

6. To add input and output ports to the CompositeActor, use the Add port
buttons on the Toolbar (Figure 5.36). The port will appear on the Workflow

canvas, where it can be connected to actors in the sub-workflow.

141

Section 5

Unnamed1#CompositeActor

80
|

O
|[@[a|&[a[p [I[@]= =[]0 e
[l' s | Data Outline | N

e (T, J ano. UnnamediscomposieAcor
(Q, CompositeActor | @ @l@.‘l@\" = .1. [*]w‘w—‘l¢].
[Components Data _Outine | Workilow
(Advanc...) CSources) (Cancel) N
e —— . .
["All Ontologies and Folders H Q:sulw Add Stngle Port ;
4 Search Results CompaositeActor »
v L Components @
v Workflow 22 GML Display Add or Subtract
B CompositeActor . tem play Display
¥ [l Actors-2_0 =] Display Constant.
¥ i CompositeActor,kar - — ooEm
i] CompositeActor ¥ Computational Chemistry
¥] CoreActors,kar . ng”:ew Display
B CompositeActor =
4 results found. 18 results found,
av . ;czm.m
Corsta
CompaositeActor (2L

Figure 5.35: Adding ports to a composite actor.

7. To name the port or otherwise customize it, right-click the CompositeActor
icon and select Configure Ports from the menu (Figure 5.37). Click Commit to
save the customization. The new name (e.g., AddInteger) will appear on the
Workflow canvas of the sub-workflow.

142

Section 5

BRERNO LR
—{-ﬁurrrpunm—i Data | Outline — »

Search Components ————————

(Q Constant) ﬁ
(Advanec...) (Sources) (Cancel)

(errkfl]
{ Workflow }

CompositeActor

Configure Actor HE
Customize Name

[l Ontologies and Folders H
“4 Search Results - Configure Units
¥ [Components Open Actor L
v Data Input Get Metadata
v Workflow Input Documentation
v Constant Listen to Actor
B constant] PR .
[string Constant MO0 Configure ports for Compo ctot
¥ Workflow Name |Input | Output| Multiport| Type |Direction | ShowName | Hide | Units
v Workflow Input Port [y [y 4] DEFAULT 4] [l
¥ Constant
. Constant
. String Constant) 4
M A;tors—Z_O v (Commit) Apply (Add) Remove (Help) C Cancel)
8 results found. i i _ _ 4

avw -

CompositeActor

Figure 5.36: Customizing the ports of a composite actor.
8. To connect the new port, simply draw a channel between the port and an

actor's input port (Figure 5.38). The port must also be connected to an actor
in the containing workflow. Otherwise, an error may be generated.

143

Section 5

O

[
B RERRNOE SR EEC
]
{ Components | Data Outline] 3 Workflow
~Search Comp S
(@ Constant) @ hakeSum
(" advanc..) (sources) (" Cancel) |
800 _ Unnamed1#Com
[All Ontologies and Folders I-G-‘ @l\@JE@|PJllf.1"|"|*\¢>I£¢'l¢>|0
= Components D, Outline |+ Workflow
-, Search Results omeentn Dan Qulre —
¥ [Z] Components Search Components
¥ Data Input)) @
¥ Workflow Input (Cadanc) (Csowrces) [Cance
¥ Constant ["All Dntclogies and Folders B
. Constant '+ B Compenenss E‘
. String Constant » @ Projects
¥ Workflow : ﬂ?:::(; 0
* Workflow Input » (o Directors-2_0
¥ Constant : ;’_’:":""—o
B constant -)
| . String Constant
¥ [Actors-2_0 0 results found.
¥ il Constant,kar .
B constamt |
¥ il CoreActors,kar .
B constant v

8 results found.

MakeSum

Figure 5.37: Connecting a port between a sub-workflow and a containing workflow. To complete the
connection, the port must also be connected to an actor in the containing workflow.

9. The Composite actor can now be incorporated into a containing workflow.
The simple example in Figure 5.39 passes a constant (5) to the MakeSum
composite actor, which adds the value, along with the two constants
specified in the sub-workflow, and outputs the sum in a text window.

SDF Director

Constant MakeSum

Figure 5.38: Using a composite actor in a containing workflow. This workflow outputs the sum of the
constant passed to the composite actor (5) and the values specified in the sub-workflow (2 and 3).

144

Section 5

To create a composite actor using the Create Composite Actor item under the Tools
menu:

1. On the Workflow canvas, select the components you would like to include in
the composite workflow. All selected components will have a yellow
highlight.

2. Select Create Composite Actor from the Tools menu. A composite actor
containing the highlighted components will replace them on the Workflow
canvas (Figure 5.41).

3. Customize the name of the new composite actor and add ports to connect it
to the existing workflow, or save the new composite actor to the local actor
library by right-clicking the actor icon and selecting "Save Archive (KAR) ..."
You will be prompted to assign a Semantic Type to the new composite actor.
It will then be available for your use in the Component Library.

Fle Edt Vew Workflow EEE Window Help

» Actors-2_0

» Directors-2_0
* Opendap-2_0
3 R-2_0

0 results found.

ol Animate at Runtime...
@ @ B:' Q Listen to Director w m ¢> ’
Components Data
Sl Bl e o e Composite Actor
Search Components Expression Evaluator F Director
Q Instantiate Component '
p——— Instantiate Attribute .
(Cadvanc..) (Csources Check System Settings Before Composite
o - Ecogrid Authentication - e ’
All Ontologies and Folde
————————————— Preferences >Command Line Exec
» [Components 3
» @ Projects Text Editor
» [Staustics Module Manager... Constant

‘Cimamntoutputs bradypus _vanegatu

Browser Display

=/

—
Components Data

Outline

Search Components

Q

T s
{ Advanc.. Sources)

All Ontologies and Folders

(search)

T]

» [J Components
» © Projects
» [statistics

> Actors-2_0 . -
> Directors-2_0 /\ﬂ?r(omposite
> Opendap-2_0

. R_> 0

-ommand Line Exec
prguUments. i letandle
@ xtCode
Stream tput

SDF Director

CompositeActor

=

Figure 5.39: Creating a composite actor using the Tools > Create Composite Actor menu item.

5.4.3 Saving Composite Actors

Composite actors can be saved and shared just as other types of actors can be. In
fact, saving a workflow as a composite actor is one of the simplest ways to transport
and share workflows with colleagues. Simply paste a workflow into a composite

145

Section 5

actor to create a composite actor. Composite actors can be saved to the local system
or the remote Kepler Repository, where they can be stored and shared.

To save a composite actor to the local system, right-click the actor and select "Save
Archive (KAR)" from the menu. The composite actor will be saved in the Kepler
Archive Format—as a single file that can be stored anywhere on the local system.

To adjust how an actor appears in the Ontologies, adjust its Semantic Annotations
by right-clicking the actor and using "Semantic Type Annotation...".

To save a composite actor to the remote Kepler Repository, right-click the actor and
select "Upload to Repository.”" The composite actor can be saved to the repository
just like any other type of actor. See Section 5.3.4 for more information.

5.4.4 Combining Models of Computation

Opaque composite actors can be used to create workflows that combine models of
computation (i.e., processes that require different directors). For example, a
workflow that is managed by a Continuous Director can contain an opaque
composite actor managed by a DE Director (such a workflow can be used for mixed-
signal modeling). For more information about combining models of computation,
see the Ptolemy documentation.

5.5 Using the ExternalExecution Actor to Launch an External
Application

The ExternalExecution actor can be used to launch an external application from
within a Kepler workflow. The actor can pass values to the application and return
values that can be used or displayed by downstream actors. In order to use the
ExternalExecution actor, the invoked application must be on the local computer and,
in some cases, configured appropriately. In this section, we will look at several
examples of workflows that use the ExternalExecution actor.

External Execution
output

error
exilCode

146

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html

Section 5

The ExternalExecution actor is part of the standard Kepler library and can be found
under "General Purpose/Unix Command" in the component tree or via a search
under the Components tab.

5.5.1. Opening the HelloWorld Application

The workflow in Figure 542 uses the ExternalExecution actor to open the
HelloWorld application, a simple Java program that ships with Kepler. The
HelloWorld application accepts an argument-- a user name (by default
"Kepler_User")--and outputs the string "Hello Kepler-User!". This workflow can be
found in the demos/getting-started directory (07-CommandLine_1.xml).

e 00 .07-CommandLine_1.Display
Hello Kepler_User!

SDF Director

@ WorkingDir: property("outreach.workflowdir")+"demos /getting-started”

CommandLine
[# "java -cp ./ HelloWorld Kepler_User"

External Execution

BFTOr
exitCode

Display

Figure 5.40: Using the ExternalExecution actor to launch the HelloWorld application.

The command to execute, "java -cp ./ HelloWorld Kepler User",
invokes the HelloWorld application (the "-cp ./" option instructs Java to use the
current directory in the classpath). This command is specified by a Constant actor
called CommandLine and passed to the ExternalExecution actor via the actor's
command port. To change the output string from the default, "Hello Kepler_User!",
to "Hello Bob!", simply update Kepler User to "Bob".

The working directory—the place where the HelloWorld application will be

executed—is specified via the actor's directory parameter. A workflow
parameter, WorkingDir, specifies the name of the directory:

147

Section 5

WorkingDir: property ("outreach.workflowdir")+"/demos/getting-

started"

and the ExternalExecution actor's directory parameter references this value
($WorkingDir). Otherwise, the actor's parameters are left at their default settings

(Figure 5.42).
Edit parameters for External Execution
2 . -
».."‘/‘ itirgCaunkLinit: NONE]
command:
directary: $WarkingDir
environment: Hname =", value = "t

waitForProcess:

class:

throwExceptiondnMonZeroR eturn:

prependPlatformDependent ShellCommand: n

pholemy. ackar.lib, Exec

semanticType0m: urn:lsid:localhost:onto: 1:1#ExternalExecutionEnvironmentAckor
semanticTypell: urn:lsid:localhost onko: 2: 1 #UnixCommand
Cammit] [Add Remove l [Restore Defaults] [Preferences] [Help] [Cancel

Figure 5.41: The parameters of the ExternalExecution actor.

The ExternalExecution parameters are used to customize the environment and
output of the actor (Table5.1).

Parameter

Purpose

firingCountLimit

Specify a positive integer to limit the maximum number of
times the actor is executed.

command The command string to execute (e.g., 1s or
C:/Program Files/Internet
Explorer/IEXPLORE.EXE) and, optionally, one or
more arguments. The command can also by input via the
actor's command port.

directory The directory in which to execute the command. The
default value of this parameter $CWD, which
represents the user's current working or home
directory.

environment

An array of records that name an environmental
variable and a value: {{name = "NAME1", value =
"value1l"}..} Where NAME1 is the name of the

148

Section 5

environmental variable, and valuel is the value. For
example {{name = "PTII", value = "c:/ptll"}} sets the
value of PTII to c:/ptll. If the parameter is set to
{{name="", value = ""}}, then the environment from the
parent process is used. If environmental variables are
set with the parameter, the parent values will not be
passed to the process. To view the current
environment, use the "env" command.

prependPlatformDependent
ShellCommand

If this parameter is selected, the actor will preface the
command with a platform-dependent shell command
'‘cmd.exe \c' (under Windows NT or XP) or windows
95, the arguments 'command.com /C' under
Windows 95 or '/bin/sh -c' (all other
platforms). By default, the parameter is not selected.

NOTE: This parameter must be selected if file redirection
is used in command

NOTE: Under Cygwin, if true, the path environment of
the subprocess is not identical to the path of the calling
process.

throwExceptionOnNon
ZeroReturn

If selected, the actor will generate an error message if
the invoked subprocess returns an error.

waitForProcess

Select to indicate that the command should finish
executing before the actor outputs results. By default,
the actor will stream command results as they are
generated.

Table 5.1: The ExternalExecution actor parameters.

5.5.2 Opening a Local Browser

A very simple example of a workflow that uses the ExternalExecution actor to open a
browser window is shown in Figure 5.43. The location of the browser software, in this
case C:/Program Files/Internet Explorer/IEXPLORE.EXE for a

Windows system (on a

Mac, the location would be something like

/Applications/Firefox.app/Contents/Mac0OS/firefox), is specified as
the value of the ExternalExecution actor's command parameter (Figure 5.44). All other
parameters are left at their default values.

149

Section 5

|97 Gongte . i 1ssoft tnternet Lrplores LoE
| e L0t Yew FPportes Jook Heb »
CRER ¢ sawth < rwvontes 2 N
8)10 (fwoven oge. cony v (o »
| Cougle Gv viGug B v 1) Monaise P Y
Web e Mg | S

SDF Director

Gougle

External Execution

10y Susnres Sohtane S RO T
output evep—
command error
input exitCode | @] cere S Loca vt et

Figure 5.42: Using the ExternalExecution actor to open a browser window.

Edit parameters for External Execution \
\? firingCountLimit: BOME
@nd: C:/Program FilesfInternet Exp!orerIIEXPLORED
directory: TOWD
environment: ‘{{name =" value ="}
prependPlatformDependentShellCommand: O
throwExceptionOnhonZeroReturn:
waitForProcess:
firingsPerIteration: 1
[Commit l [Add] [Remove] [Restore Defaultsl [Preferences] [Help] [Cancel]

Figure 5.43: The location of the browser software is specified as the value of the command parameter.
The other parameters are left at their default values.

5.5.3 Opening the Maxent Application

The workflow in Figure 5.45 uses the ExternalExecution actor to launch the Maxent
software (a Java application) from a workflow and to process a specified set of data.
After the Maxent software has executed, Kepler's BrowserDisplay actor displays the
HTML file that contains the results (Figure 5.46). In order to run the workflow, the
Maxent software must be installed on the local system and properly configured.
Instructions for downloading and customizing the software are included in this
section.

150

Section 5

Maxent software is based on the maximum-entropy approach for species habitat
modeling. This software takes as input a set of layers or environmental variables
(such as elevation, precipitation, etc.), as well as a set of georeferenced occurrence
locations, and produces a model of the range of the given species. Maxent is written
by Steven Phillips, Miro Dudik and Rob Schapire, with support from AT&T Labs-
Research, Princeton University, and the Center for Biodiversity and Conservation,
American Museum of Natural History.16

®args: "-e layers -s samples/bradypus.csv-o outputs -t ecoreg -r -a"

SDF Director

Constant
"C:maxent/outputs/bradypus_variegatu...

External Executio

command

input Browser Display

Figure 5.44: Using the ExternalExecution actor to invoke an application.

16 Maxent website, http://www.cs.princeton.edu/~schapire/maxent/

151

Section 5

&7 Maxent model for bradypus_variegatus - Microsoft Internet Explorer Q@.}
File Edit View Favorites Tools Help .','
@ Back ~ > | »® ! ;\J /.) Search f/ Favorites Q;? ¥ g - | & ﬁ ‘i-“

Address ‘g‘] C:\maxentioutputsibradypus_variegatus.html ;E] Go Links >
Google [Cl~ "v'{ Go &0 £9 ~ $% Bookmarks~ &b 190blocked 2P Check v~ 2> (@) settings~ &3 ~

|

Maxent model for bradypus variegatus

This page contains some analysis of the IMaxent model for bradypus_variegatus, created Tue Jan 08 11:06:37 PST
2008 using Maxent version 3.1.0. If you would like to do further analyses, the raw data used here is linked to at the
end of this page.

Analysis of omission/commission

The following picture shows the omission rate and predicted area as a function of the cumulative threshold. The
ornission rate is is calculated both on the training presence records, and (if test data are used) on the test records.
The omission rate should be close to the predicted omission, because of the definition of the cumulative threshold.

Omission vs. Predicted Area for bradypus_variegatus

Fraction of background predicted =

1.0 Omission on training samples =
0.9 Predicted omission =
0.8
0.7
9 [»]
< T
”@ Done ¢ My Computer

Figure 5.45: Output of workflow displayed in Figure 5.45. The BrowserDisplay actor displays the HTML
results page generated by the Maxent software.

The Kepler workflow passes arguments to the Maxent software. These arguments,
which are specified by a parameter (args), tell the software where to find the
appropriate data files. In other words, if you run this workflow on your system, you
must either ensure that your local data files are in the directories specified by the
existing workflow arguments (or change the arguments to point to the location of
your source data and match your existing configuration).

Before you can run a Kepler workflow to invoke Maxent, you must download and
configure the software (if it's not already on your system). To set up your system:

1. Download and configure the Maxent software. Maxent can be freely
downloaded from http://www.cs.princeton.edu/~schapire/maxent/. Place
the maxent.jar and the maxent.bat file (if using Windows) in a directory
called: C:/maxent

2. Download and wunzip the sample data from the Maxent site:
http://www.cs.princeton.edu/~schapire/maxent/tutorial /tutorial-data.zip

The sample data are contained in four directories:

layers: contains environmental data such as rainfall, etc.

152

http://www.cs.princeton.edu/~schapire/maxent/
http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial-data.zip

Section 5

samples: contains latitude/longitude occurrence location data for
Bradypus variegatus, a three-toed sloth.
outputs: an empty directory that will be used for result files
generated by the application.
swd: (not used in this tutorial)
3. Move the "/layers," "
paths are:
C:/maxtent/layers
C:/maxtent/samples
C:/maxtent/output

/samples” and "/outputs" directories so that the file

The Maxent software and the data files needed to run the Kepler workflow
are now in place.

4. Open Maxent and perform an example run by specifying the sample and
environmental layer data as well as an output directory (Figure 5.47). Click
RUN to execute. If you have trouble installing, running, or using Maxent,
please see the tutorials on the Maxent site.

153

http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc

Section 5

|42/ Maximum Entropy Species Distribution Modeling, Version 3.1.0 g@
Samples Environmental layers
Flle?cﬂ.rna:-:ent\samples\hradmus.-:sv [Browse ‘ DirectoryFile iCI maxentlayers m
l _/ '?JVC Continuous ¥ o
v dtr6190_ann Continuous v
v ecoreg Continuous v
v 1rs6190_ann Continuous v
v/ h_dem Continuous lw
[v] bradypus_variegatus | pre6190_ann Continuous v
v pre6190_I1 Continuous v
V| pre6190_110 Continuous v
v pre6190_14 Continuous v il
V| pre6190_17 Continuous v
v tmn6190_ann |Continuous vl
Sth all Deselect all : J
[C] Linear features Create response curves |
(] Quadratic features Make pictures of predictions |
] Product reatures Do jackknife to measure variable importance ||
[Threshold features Output format [Logistic |~
| M 0 8 PR 1
=l Output dlmctory‘ic maxenfioutputs | Browse >
(v] Auto features Pr irectoryfie - se
{ Run | Settings [Help

Figure 5.46: The interface of the Maxent software. Select sample and layer data as well as an
output directory to perform a simple run.

When you click Run, Maxent processes the selected sample and layer data and
generates a number of result files (including an HTML page of results) which are
saved to the "C:/maxent/output” directory.

The Kepler workflow "recreates"” all the steps just performed in the previous step:
Kepler opens the Maxent software, specifies sample and layer data, as well as an
output directory, and then runs the software. To create the workflow:

1. Drag and drop an SDF Director to the Workflow canvas. Set the director's
iterations parameter to 1 to avoid calling the Maxent software multiple
times.

2. Drag and drop a Parameter onto the Workflow canvas and specify the

arguments that should be passed to the Maxent software (in this case, the
location of the sample and layer files as well as the name of the output

154

Section 5

directory and the name of the variable that is categorical (ecoreg). Paths are
relative to the location of the invoked software). The parameter value is:

-e layers -s samples/bradypus.csv -o outputs -t ecoreg -r -a

Remember to enclose the parameter value in double quotes.

Rename the Parameter args. To rename the parameter, right-click its icon
and select Customize Name from the drop-down menu.

. Drag and drop a ExternalExecution actor onto the workflow canvas and
customize its parameters (Figure 5.48):

a.

b.

C.

Specify the value of the command parameter. The command
parameter contains a command to execute, in this case:

java —-mx512m -jar maxent.jar Sargs

This command runs Java, specifies Java arguments (-mx512m
specifies the megabytes of memory available to the program and -
jar specifies that java is to be run from a Java Archive (JAR) file
format), opens the Maxent software and passes it a string of
arguments. $args references the value of the args parameter
defined on the Workflow canvas.Note: arguments can also be
included in a .bat file that is used as a command.

Set the working directory to c:/maxent/

Activate the waitForProcess parameter (if it is not already
selected) by checking the box beside it. The actor will not produce
output (i.e, a '1' on the exitCode output port if the execution is
successful) until the Maxent software has completed processing. By
default, the actor outputs results as they are processed.

155

Section 5

Edit parameters for External Execution
1?{/ firingCounkLimit: MOMNE
command: java -mx512m -jar maxent.jar $args
directory: Crimaxent
environment: Hname =", walue = "t}

prependPlatformbependent ShellCammand: il

throwExceptionCnkanZeraReturn:
waitForProcess:
class: ptoleny . actor.lib, Exec
semanticType00: urntlsid:lacalhostonko: 11 #ExternalExecutionEnvironmentactor
semanticTypell: urn:lsid:localhost:onta: 2: 1 #Uni:Command
firingsPerTkeration: 1
Carmnmit] [Add l [Remove l [Restore Defaults] [Preferences] [Help] [Cancel

Figure 5.47: The parameters of the ExternalExecution actor.

5. Drag and drop a Constant actor onto the Workflow canvas and connect it to
the output port of the CommandLineExec actor. Specify the location of the
Maxent HTML result file as the value of the Constant actor:

"C:/maxent/outputs/bradypus_variegatus.html"

Note: The Constant actor will not output this location until it receives a
trigger from the ExternalExecution actor.

6. Dragand drop a BrowserDisplay actor onto the Workflow canvas and connect
its inputURL port to the output port of the Constant actor.

The workflow is now ready to run! After the Maxent software has executed, the
results are saved to the C: /maxent/output directory and the ExternalExecution
actor outputs a token that alerts downstream actors that it is done. A Constant actor
specifies the location of the HTML file output by Maxent, and a BrowserDisplay actor
opens the file and displays it in the default browser.

The ExternalExecution actor is part of the standard Kepler library and can be found
under "General Purpose/Unix Command" in the component tree or via a search
under the Components tab.

5.5.4 Opening R

The workflow in Figure 5.50 uses the ExternalExecution actor to open the R

application, with the "--no-save option". The workflow passes a string
"qg () \n", which

156

Section 5

sends R a 'quit' function followed by a 'new line ('\n"'). This workflow can be
found in Kepler's demos/getting-started directory (08-CommandLine_2.xml).

800 .08-CommandLine_2.Display
'citation(})' on how to cite R or R packages in publications.

Type 'demo()’ for some demos, 'help()' for on-line help, or
'help.start()’ for an HTML browser interface to help.

Type 'g)' to quit R. m
=qf)

FY
SDF Director -

Il — — 4'?“

& WorkingDir: property(“outreach.workflowdir”)+ "demaos /getting-started”

Command

[> "R —-no-save"

External Execution

Display

Figure 5.48: Using the ExternalExecution actor to open the R application.

The command to execute, "R —no-save", which invokes the R application with the
"—no-save" option, is specified by a Constant actor named Command and passed
to the ExternalExecution actor via the actor's command port. The input, "q () \n", is
also specified by a Constant actor (Input).

The working directory—the place where the command will be executed—is
specified via the actor's directory parameter. A workflow parameter,
WorkingDir, specifies the name of the directory:

WorkingDir:property ("outreach.workflowdir")+"/demos/getting
-started")

and the ExternalExecution actor's directory parameter references this value
(SWorkingDir). Otherwise, the actor's parameters are left at their default settings
(Figure 5.51).

157

Section 5

Edit parameters for External Execution
th?]J," firinaCounkLimit: NOMNE
command:
directary: $WarkingDir
environment: Hname =", walue = "t}

prependPlatformbependent ShellCammand: il

throwExceptionCnkanZeraReturn:
waitForProcess:
class: ptoleny . actor.lib, Exec
semanticType00: urntlsid:lacalhostonko: 11 #ExternalExecutionEnvironmentactor
semanticTypell: urn:lsid:localhost:onta: 2: 1 #Uni:Command
firingsPerTkeration: 1
I Carmnmit] [Add l [Remove l [Restore Defaults] [Preferences] [Help] [Cancel l

Figure 5.49: The parameters of the ExternalExecution actor, customized for the demos/getting-started/08-
CommandLine_2.xml workflow.

5.6 Iterating and Looping Workflows

Creating a Kepler workflow to execute a task once is relatively easy: simply connect a
series of actors and run the workflow. Creating a Kepler workflow that repeats that task a
number of times, perhaps with different input data for each iteration, is somewhat more
complicated. In more conventional programming languages like Fortran, C, C++, or Java,
iteration is accomplished using a loop structure with an index that is incremented each
time the body of the loop is executed. In a visual programming environment like Kepler,
there are several ways of carrying out iterative calculations, most notably using:

SDF iterations

Ramp and Repeat actors
Array data objects
Higher-order composites
Feedback loops

Some of these techniques are more appropriate for feedback loops—iterating workflows
in which each iteration depends on the output of the previous one. Others are more suited
for iterating workflows in which the output of each iteration is independent of the
previous one (repeating a process a number of times for different parameter values, for
example). In this section, we will look more closely at each strategy for iteration and
when each is most appropriate.

158

Section 5

5.6.1 Iterating with the SDF Director

The simplest way to iterate a workflow is with the SDF Director's iterations
parameter (Figure 5.52). By default, the iterations parameter is set to "AUTO",
which means that the director will execute the workflow once. If the value is set to "0",
the director will iterate the workflow forever. Values greater than zero specify the actual
number of times the director should execute the entire workflow.

Edit parameters for SDF Director

&
vectorizationFactor:
allowOisconnectedGraphs:
allowRateChanges:
constrainBufferSizes:
period:
synchronizeToRealTime:

=4 (G [| el b

O

timeResohution: 1E-10

class: ptolemy.domains, sdf kernel SDFDirector
semanticType000: wrn:lsid:localhost:onko: 1; 1 #Director
semackicTypel11: urn:lsid:localhost:onto:2: 1 #Director

[Commik] [Add] [Remove] [Resto«a Defaudts] [Preferences] [Help] [Cancel]

A Figure 5.50: The SDF Director's iterations parameter. Set the value to the number of desired iterations.

Setting the workflow iterations with the SDF iterations parameter is useful for
cycling a workflow a number of times, provided that each iteration is independent (i.e.,
that the value of a given iteration does not depend on the output of any previous
iterations). Workflows used to transform a series of values read from a data file are
usually well-suited for this type of iteration. In this case, the iterations parameter
can be set to the number of values in the data set. Choose an actor that can retrieve the
desired input for each iteration (e.g., a LineReader actor).

The portion of a workflow displayed in Figure 5.53 uses a LineReader actor to read a
data table that contains a Species name and the URL of a data file that contains
information about locations in which the species has been found (the complete workflow
can be found under demos/unsupported/ENM/GARP_MultipleSpecies-V.xml). The
LineReader actor outputs one line of data each time the workflow iterates.

159

Section 5

_Line Reader

B String Splitter2
Species_Name

LocationFilename

LocationFilename?2 Location_Filename

Figure 5.51: A simple workflow that could use SDF iterations parameter to control the number of
workflow iterations.

The workflow wuses a sample dataset that contains two records
(KeplerData/workflows/module/outreach-2.X.Y/data/garp/speciesList.txt). = The
original data looks like this:

Mephitis,digir_data_mephitis.dat
Zapus,digir_data_zapus.dat

Each time the workflow iterates, the LineReader actor reads and outputs one line of
data, and the workflow outputs the corresponding species name and data file.

5.6.2 Using Ramp and Repeat Actors

The standard Kepler component library includes several actors that can be useful
when iterating a workflow or a portion of a workflow: the Ramp actor is used much
like a "for loop", which executes a task a set number of times; and the Repeat actor
can be used to repeatedly output a specified value. The Ramp actor is particularly
useful when iterating a PN-directed workflow, as there is no way to set the number
of iterations with a Director parameter.

The Ramp actor controls iterations via its parameters: firingCountLimit,
init and step (Figure 5.53). The firingCountLimit parameter sets the
number of times the actor should iterate. The actor keeps track of the iterations,
incrementing its index every time an iteration is performed. The initial value of the
index, as well as the amount that the index is incremented is set with the int

160

Section 5

parameter and the step parameter, respectively. Each time the actor fires, it
outputs the value of its index (an integer).

-
Edit parameters for Ramp
1?/ firinaCounkLimit: 10|
imik: i
skep: 1
class: ptalerny . actor lib,Rarmp
semanticTyped0o: urni:lsid:localhost;onto: 1 1#IterativeMathoper akionActor
semanticTypelll: urrilsid:localhost:onka: 2: 1 2 1ter ativeOper ation
semanticType222: urni:lsid:localhost;ontbo: 2: 14 workflowInpuk
I Zormmit] [Add l [Remove l [Restore DeFauIts] [Preferences] [Help] [Zancel l

Figure 5.52: The parameters of the Ramp actor, which can be used like a "for loop" in a workflow.

The Ramp actor's output can be used as a counter (increasing, or decreasing if the step
is set to a negative integer). The output is also commonly used to generate unique values
as a workflow iterates. For example, the Ramp actor's index value can be used to generate
a unique file name for each iteration (e.g., ‘filel', 'file2', etc.) (Figure 5.54).

161

Section 5

| 04-HetloWortd. Display
B Todks teb

[]
i
£

filel &
f£1le2
file3
1led
1leS
1led
ile?
1led
1leS

1le10 -

oM

SDF Director

A oMM

Expression

L “file™+count

Display

| Edit parameters for Ramp @
:;/ fringCourtLime : 1o
nt:
Kepe 1
class: ptolemy, actoe Bb.Rarmp
Semantic TypeQoD: urn; s locathost :onko: 111 # Tter ativeMathOper ationAct of
semantikTypelli: urn: ki Jocalhost :0ek0:2: 1 #Tber ativeOper son
semantic Type222; urn;iad:locahost orko:2: 1 #'WorkflowInput
FringsPer arstion: 1

ROy . 3Ct0r B RO

{ Comm.] I Add] (Remove Ule‘xo'e wm[[‘hclevenne‘,_' | e] | Cancel

Figure 5.53: The Ramp actor used with an Expression actor to generate a unique file name each time the
workflow iterates. The window in the upper-right displays the workflow output (the ten unique names
generated by the workflow).

The simple workflow in Figure 5.54 generates a unique file name each time the
workflow iterates (ten times, as specified by the SDF Director's i teration parameter).
Each time the workflow iterates, the Ramp actor increments its index by the value of its
step parameter and outputs the new value. Note that an input port named count has
been added to the Expression actor. The Expression actor references the value passed to
this port with the specified expression (“file"+count).

One common problem with iterating a workflow multiple times appears when only one
"pbranch” of a multi-branch workflow changes with each iteration. For example, an actor
in an iterated workflow may require two inputs: one input that changes with every
iteration (a counter or a value to process), and one that remains constant. If the constant
value is a simple integer or string, then repeatedly generating that value adds little
overhead to the workflow; however, if the constant value requires time-intensive
processing to generate, then repeating the calculation each time the workflow iterates will
significantly increase the workflow processing time. Use a Repeat actor, which reads an
input token and duplicates it a specified number of times, to avoid this type of redundant
calculation.

162

Section 5

For example, the workflow fragment in Figure 5.55 uses two Repeat actors to duplicate
the inputs that the Calculate Omission/Commission actor receives. In this case, both
inputs remain constant because the Omission/Commission calculation is probabilistic and
the Calculate Omission/Commission actor is designed to repeat a calculation on the same
set of inputs.

New Dirsciory Name

L DataDirecsorys "+ S0 . Make Dvoctory .
ff DonDbuchon T 20e0estame Cadculnte Om s s inCommission Croate Omission/Comméssion Table

T — T T Commumon_Omimion_Recond

1 - ErnlameSet

Dandirectony="PCC1.ox

ongiude_iattude_table Calatate Conwsull Mask

Figure 5.54: A fragment of workflow that uses Repeat actors to avoid redundant calculations. The full
workflow can be found at demos/unsupported/ENM/GARP_SingleSpecies_BestRuleset-1V.xml.

The numberOfTimes parameter for both Repeat actors is set to the number of
workflow iterations (Figure 5.56). In this case, the value of the parameter refers to the
value of a parameter (numIterations) specified on the Workflow canvas.

Edit parameters for Repeat

24 herOFTimes: i

“.:/ nurberOFTimes: numlterations|
blocksSize: 1
class: ptolemy domains, sdf .lib. Repeat
semanticType000: urrelsidilocalhost:onka: 1: 1# Conkraléckor
semanticTypelll: urrelsid:localhost:onto: 2: 1#warkflowContral

Zommit] [Add] [Remove] [Restore DeFauIts] [Preferences] [Help] [Zancel

Figure 5.55: The parameters of the Repeat actor.

5.6.3 Using Arrays Instead of Iterating
Creating a Kepler workflow that repeats a task a number of times with different input

data each time, does not always require iterations. Rather than creating a loop to repeat a
calculation for a series of values, the values can all be passed and processed in a single

163

Section 5

workflow iteration using data arrays. Both the Expression actor and the R actors, which
are used for statistical computing, are designed to process data arrays, making workflows
that use these actors good candidates for this type of solution.

For example, in Kepler expressions and R scripts, the '+' operator works not only with
single numbers but also arrays (aka "vectors™). The workflow in Figure 5.57 uses an
Expression actor to read an array of values, add 10 to each value, and output the result.

SDF Director

Constant Expression SumOfValues

> {1,2,3,4,5} Array To Sequence

K Values Plus 10
File Tools Help

11
1z
13
14
15

Figure 5.56: Passing an array of values to an Expression actor to process in a single workflow iteration.

The Expression actor in Figure 5.57 receives an array through a user-defined port called
input, which is referenced by the Kepler expression input+10. The results are output
as an array, which is dismantled to a sequence of values and then displayed by the
Display actor.

The eml-simple-plot-R workflow (Figure 5.58), included with the Kepler distribution
(KeplerData/workflows/module/r-2.X.Y/demos/R/eml-simple-plot-R.xml) demonstrates
how arrays can be used with an RExpression actor. The workflow uses two
SequenceToArray actors to transform sequences of data (for relative humidity and

164

barometric pressure) that are stored on the EarthGrid

Section 5

in the dataset Datos

Meteorologicos. These arrays are passed to an RExpression actor, which plots the data

and outputs a graph of the information.

SDF Director

RExpression

ImageJ

Display

r { Kirstent png

(4B0xA %0 picels, Sl T25K

[K emi shmple plot Display
Ele Todks e o - ° o 000
> getwd('C:/Docusants and Jettinga/Xicacen/.keplec/') o
> png(2ilenase = ‘Kiratenl.png',widch = 400, height = 400, pot
> BN <- c(99, 99, 99, 99, 99, 99, 99, 99, 99, 92, B3, 71, 74, .
> BARD <- ©(953.4, 953.0, 954.0, 934.3, 934.5, 934.7, 934.0, 9 >
> swwary (R 2

Bin. 12t Qu, Median Roan 3cd Gu, Rax. a

24.00 B1.30 99.00 07.08 $9.00 99.00 3 4 °
> susmary (FARD) o

Nin, 1ot Qu. MNedian Nean 3rd Qu, Max. T

= : 5 3 -~ o

950.2 952.0 953.5 953.2 954.4 955.5 I
> plot (BARD, RID
|

o .
T 7] e, P
: 5
& T T T T T
350 951 952 953 954 955
BARO

Figure 5.57: Passing data arrays to an RExpression actor instead of iterating the actor multiple times for

individual values.

NOTE: To run this workflow R, a language and environment for statistical computing,

must be installed on the computer running the Kepler application.

165

Section 5

5.6.4 Iterating with Higher-Order Composites

Higher-order Composite actors, which are actors that operate on the structure of a model
rather than on data,’’ provide a convenient mechanism for iterating an entire sub-
workflow. Of particular use is the higher-order composite actor called
RunCompositeActor, which executes a contained workflow as if it were a top-level
workflow each time it fires. The actor is well suited for use in workflows that repeatedly
run other workflows with varying parameter values (Figure 5.59).

o Species_List_Path: property("KEPLER")+"Abes idata'garp™

o Species_List “specieslisiig®

o MnimumSpecimenCount 10

nformason

K Ml O e pler 20070716/ demos /ENMIGAR. pecies-V xmisSingle Species GARP Model =y T‘;W
[Fie EdR View Workflow Yook Window Heb

ReQEQP @ my)ioce

e " cies_Name ‘mephis*
! Components Data Outline " Rk o

Search Components

Q 3 (Search)

—
Advanc...) Sources

Al Ontologies and Folders B

> j Components
» B Projects

» [staustics
Actors-2_0
Directors-2 0
Opendap-2_ 0

»
»
»
» LR-20

v
0 results found. < >

|

Figure 5.58: The GARP-MultipleSpecies-V.xml workflow uses a higher-order composite actor to iterate a
complete workflow.

The higher-order composite actor in Figure 5.59, Single Species GARP Model, runs the
contained workflow each time it fires. In this case, the contained workflow is used to
create an environmental niche model for a single species; the top-level workflow iterates

17 ee, Edward A. Steve Neuendorffer, Using Vergil
http://ptolemy.berkeley.edu/ptolemyl1/ptl16.0/ptl16.0.2/doc/design/usingVergil/usingVergila9.htm

166

Section 5

through a list of multiple species, and invokes the RunCompositeActor to calculate the
niche model for each one.

The initial inputs of a workflow contained in a RunCompositeActor are specified as
parameters or via port-parameters. The RunCompositeActor in the example uses two port-
parameters: Species Name and Location Filename. The values of the
parameters (mephitis and location.dat) are used for the first workflow iteration.
Subsequent iterations use values passed to the RunCompositeActor by the top-level
workflow via ports (i.e., additional species names and associated data to be processed).

5.6.5 Creating Feedback Loops

From integrating differential equations, to modeling signal amplification or how global
warming and the concentration of greenhouse gases are related, feedback loops are a
common workflow structure. A feedback loop consists of iterations that rely on the value
of previous iterations. The simple example in Figure 5.60 shows a workflow that adds
one to the value of each previous workflow iteration and outputs the new sum, for
example. A relation is used to branch the looped output so that the sums can be displayed
as well as cycled back to the input of the Add or Subtract actor.

K| . Display Q@
Display File Tools Help
SDF Director 0 Tl
1:
2
3
4
5
) |Is
-
=]
Add or Subtract g e

SampleDeld

Figure 5.59: A simple feedback loop used to add one to the value of the previous iteration.

Note that the workflow in Figure 5.60 uses a SampleDelay actor, which is required when
constructing a feedback loop that uses an SDF director. The SampleDelay actor gets the
iteration loop 'started’. Because the input of the feedback loop depends on its output, the
loop will deadlock on the first iteration because there is not yet any output. The
SampleDelay actor breaks this deadlock by providing some initial values (specified with

167

Section 5

the SampleDelay's initialOutputs parameter). On subsequent loop iterations, the
actor simply passes along its inputs.

Feedback loops under different directors require different actors. Under a PN Director,
for example a Stop actor is required to stop feedback loops, as the director has no
iteration parameter (see $Kepler/demos/SEEK/DiscreteLogistics_PN_Director.xml for an
example).

Probably the most straightforward example of a feedback loop is the integration of a
differential equation using the Continuous Director (Figure 5.61).

Continuous Director

TimedPlotter

initial population e initPop: 1.0

growth factor er: 2.6

carrying capacity e k: 100

Logistic Model Integrator

H n*r*(1 - n/k)

Figure 5.60: A workflow that uses a feedback loop to integrate a differential equation. This workflow can
be found under demos/SEEK/LogisticsModel_CT_Director.xml.

The workflow in Figure 5.61 solves the logistics equation, which is commonly used to
describe resource-limited population growth. In this model, n(t) is the population as a
function of time and the rate of population change is given by dn/dt = n*r*(1-n/k). The
integrand (the right side of the equation) is put into an Expression actor, which is
connected to an Integrator actor. The output of the Integrator is connected back to the
input of the Expression actor, creating a feedback loop and providing the current value of
n. In this example, the integrand is evaluated at some point in time and used to estimate
the population at a slightly later time (the desired time interval is specified by the
Continuous Director parameters). The estimated value is sent back to the Expression
actor to evaluate again, and the loop continues to iterate using the output of the Integrator
actor in each iteration. For examples of this workflow executed under an SDF and a PN
director, see outreach/workflows/demos/SEEK/DiscreteLogistics SDF_Director.xml and
outreach/workflows/demos/SEEK/DiscreteLogistics PN_Director.xml.

5.7 Documenting Workflows

168

Section 5

Whether a workflow is to be shared with the public or used by only you,
documentation is an important part of its development. Kepler has a number of
documentation features that facilitate the process of annotating workflows. In
general, we recommend that the workflow be annotated on the Workflow canvas
and that in-depth documentation be added to the workflow documentation screen,
which is accessed (both to read and to customize) via the workflow's right-click
menu. Documentation should include the scientific problem that the workflow
solves, how the problem is solved using the Kepler system, and the status of the
workflow (if it is finalized, or what future work is planned). Documentation should
also provide instructions for running the workflow, offering information about the
type and format of data, the number of iterations to run, and any other information
that is needed to understand and use the workflow.

5.7.1 Annotation Actors

The Annotation actor, which is included in the standard Kepler component library,
provides an easy mechanism for adding notes to the Workflow canvas. Simply drag
and drop the actor to the Workflow canvas and double-click the default annotation
("Double click to edit text") to open the parameters for customization. Any text
added to the Annotation actor's text parameter will be rendered on the Workflow
canvas. The other parameters allow basic formatting: size, color, and style (bold or
italic).

A workflow can use any number of Annotation actors to document everything from
an overview of the workflow to the function of an individual actor to the value of a
parameter or format of a data set.

5.7.2 Documentation Menu

Right-click the Workflow canvas and select Documentation from the drop-down
menu to begin using the workflow documentation screens. To add instructions to a
workflow documentation screen, select Documentation > Customization from the
menu. A dialog window with fields for a description, author, version, and date allow
users to input instructional text. Click Commit to save the instructions and close the
customization window. The entered content will appear the next time the
documentation window is displayed.

Documentation content can include links to external web pages (which will open in
a Kepler viewing window) and HTML formatting (, <tt>, , etc). XML-reserved

characters (e.g, '>', '&', ', etc) must be escaped. The most common reserved
characters and their entity replacement are listed in Table 5.3.

XML-reserved Character Replace with:

169

Section 5

& &
< &|t;
> >
" "
'

Table 5.2: Common XML-reserved characters.

To delete the content of a documentation screen, select Documentation > Remove
Customization. Note that this action cannot be undone with the "Undo" Menu bar item.

5.8 Debugging Workflows

While Kepler eliminates much of the need to code by providing a library of actors
and a visual way to link them, you may encounter unexpected problems as you
build, test, and execute your own workflows. However, Kepler provides a number of
tools that can help you see how your workflow is executing and get to the bottom of
errors quickly.

5.8.1 Animating Workflows

Select Animate at Runtime from the Tools menu to follow the execution of the
workflow visually on the Workflow canvas. As each actor is executed, it will be
highlighted with a red outline (Figure 5.62). The actor will remain highlighted for
the number of milliseconds specified when the menu item is selected (e.g., 1000).

To turn off animation, simply select the "Animate at Runtime" menu item again.

Note that the "Animate at Runtime" command only works correctly with workflows
that use the SDF Director or DDF Director.

170

Section 5

K fite: /C kepler 20070716/ demos/getting-starte d/00-StatisticalSummar y. xml Q@
Eie Edt Yiew Workfiow Jook Window Hebp

e Pli@pmpd -0 e

[Components Data Outline | ¥

Search Components -
F
Q (Search) %‘"
(" Advanc..) (Sources) | Cance
Mean

[All Ontologies and Folders I
Constant

» (& Components > (1.2,34,56,7.89,10) 0o cagagcs

» [Projects Standard Dewation

4 @ Statistics

» [Actors-2_0

» [Directors-2_0

» | Opendap-2_0 Varance

> R-2_0
This is a simple example of a scientific workflow that calculates
several statistical summary parameters. The 'Constant’
expression on the left is an array of numbers (1 through 10)
(The brackets surrounding the list is the expression used 1o indicate
an array.) A customized RExpression actor called 'SummaryStatistics'
is connected to this source. Output ports are connected to "Display’
actors which show the Mean, Standard Deviation, and Variance of the
numbers in the input array.

\ NOTE: The R system (www.r-project.org) must be installed for this
|0 resuks found. workflow to operate properly
>
g i1 Samantha Katz, Dan Hggins
R == December 19, 2006
a

v

Figure 5.61: Select Animate Workflow to highlight the currently executing actor in red when the workflow
is run.

5.8.2 Exceptions

When a workflow is run and something is amiss, Kepler often "throws an exception.”
An exception is an event that disrupts the normal flow of a program's instructions
while the program is being executed. 18 The exception appears as an error screen
that contains information about the problem and an option to either Dismiss or
Display Stack Trace (Figure 5.63).

18 Sun Microsystems, The Java Tutorials,
http://java.sun.com/docs/books/tutorial/essential/exceptions/definition.html

171

Section 5

[K file/C: ke pler 2007071 éldﬂmslgomng-sllhdmo-SIatislkatSmry.xml E@@

([Components Data Outline |

Q j (Search)
. Advanc..) (Sources c

|| Fle Edt Yiew Workflow Jooks Window Heb

QAEQAPHO D mmhoe

| All Ontologies and Folders &

» [Components
» [projects

» [statistics

3 Actors-2_0

> Directors-2_0
3 Opendap-2_0
»

E

|
Search Components
|

R-2_0

xception

To Cartasian input), complex)

0 resuls found,
1= o
K % B
& @0
A

>)

SDF Elrccmr

Constant

ko Canesian

Standard Deviation

\Vanance

6 Type conflicts occurred in J00-Statetic alSummany on the Following inequalities:
(ptolenry. actor. TypediOPort {.00-StatisticalSummary . SummaryStatistics.graphicsFieName), string) <= (ptolemy.actor. TypediOPort {.00-StatisticalSummary . Complex

[Distriss] [Dsplay Stack Trace |

numbers in the nput array

NOTE: The R system (www.r-project.org) must be installed for this
workflow to operate properly

Samantha Katz, Dan Hggins
December 19, 2006

v

Figure 5.62: An exception meséage "thrown" when the workflow encounters trouble. Animate at Runtime

is currently active, so the portion of the workflow experiencing the trouble is highlighted.

Click the Dismiss button to close the exception window and allow workflow
execution to continue (if possible). The stack trace provides information about the
workflow's execution history and lists the names of the Java classes and methods

that led up to the error.

5.8.3 Checking System Settings

Select Check System Settings from the Tools menu to open a read-only display of the
Kepler settings (Figure 5.64). System settings include, among other things,
information about the current version of Java installed, the location of the Kepler
installation, and the current operating system and home directory.

172

Section 5

K file:/C:/kepler2007071 6/demos/getting-starte d/00-StatisticalSummary. xml E]@
File Wiew ‘Warkflow Tools ‘Window Help

Memory: 99736K Free: 37VE81ZK (38%) Max: S520256K (19%)

Request Garbage Collection]

KEFLER = C:itkeplerz0070716%.
EEPLER_DOCS = C:hwkeplerZ00D70716%
avt.toolkit = sun.avt.windows.WToolkitc
file.encoding = CplzZ52

file.encoding.pkg = sun.io

file.separator = %

Java.awt.graphicsenv = sun.awt.Win3ZGraphicsEnvironment
Java.awt.printerjok = sun.awvt.windows.WPrinterJok

jJawva.class.path = $KEP: . /configs:./lib:./lib/images: . /build/kepler.jar: . /build/kepler—-icons.jar: ./ 11
Java.class.wversion = 50.0

java.endorsed.dirs = ./1lib/jar/base-jars/apache

Java.ext.dirs = C:\Program FileshJava\jrel.6.0%1lib%ext:C:h WINDOWSY Sun’ Jawvah libhext

java.home = C:%Program FileshJawvahjrel.&.0

Java.io.twpdir = C:WDOCUME~ 1Y Kirscen' LOCALS~1% Temph

java.library.path = ./1lib

Java.runtime.name = Java(TM)] SE Runtime Enviromment

Java.runtime.version = 1.6.0-k105

Java.specification.namwe = Java Platform API Specification

Java.specification.vendor = 3un Microsystems Inc.

Java.specification.wversion = 1.6 -
< b

Figure 5.63: Kepler system settings.

5.8.4 Listening to the Director

Select Listen to Director from the Tools menu to open a viewing window that
follows all of the director's activities as the workflow is run (Figure 5.65). Each time
the director invokes a method or iterates an actor, the action is logged and displayed
in the listening window.

K| . 00-StatisticalSummary.SDF Director E]@
File Help

O00-3tatistical3wmmary.3DF Director Preinitiali=ing ... o
Invoking preinitialize() : O0-3tatistical3ummary. Constant

Inwvoking preinitialize() : O0-5tatisticaldummary. Summaryotatistcics

Inwvoking preinitialize() : O0-5tatisticaldummary. Standard Deviation

Inwvoking preinitialize() : O0-5tatisticaldummary. Variance
O0-5tatisticalduwmmary.SDF Director Finished preinitializel) .

Computing schedule

Normalized Firing Counts:

{ptolemy.actor. lib.Const {.00-Statisticaliwmnary.Constant}=1, ptolemy.actor.li
Schedule is:

Execute Scheduled

Fire Aotor ptolemy.actor.lib.Const {.00-3tatisticallummary.Constant}

Fire Aotor org.ecoinformatics.seek.R.RExpression {.00-5Statisticallurmmsr ¥.Surns
Fire Aoctor prtolemy.actor.lib.gui.Display {.00-53tatisticalSummary.Variance}

Fire ALotor ptolemy.actor.lib.gui.Display {.00-53tatisticallummary.Standard Dewi

H

Ldding firingsPerlIteration parameter to Constant with wvalue 1

Ldding firingsPerlIteration parameter to Variance with wvalue 1

Ldding firingsPerlIteration parameter to Jummary3tatistics with wvalue 1 P
< »

Figure 5.64: Listening to the director.

173

Section 5

5.9 Saving and Sharing Workflows

Workflow files can be saved and shared in a number of ways: they can be saved as
KAR or XML files and posted to a Web server, they can be emailed or saved to a
portable storage medium, and then opened with the File > Open File menu option;
or, in instances where a workflow has been saved as a composite actor and all of the
workflow components are contained in the local Kepler library, they can be
instantiated via the Tools > Instantiate Component menu option.

5.9.1 Saving and Sharing Your Workflows as KAR or XML Files

Workflows can be saved and shared as KAR or XML files in a few easy steps:

1. Save the workflow by selecting Save, or Export (for XML) from the File menu.
Workflows sent via email can be opened via the File > Open menu item.

2. If the workflow contains actors that are not included in Kepler's standard
library (or that users may not have on their local machines), those actors
must be shared as well. To share actors either:

a. Upload the actors to the Kepler Repository. The Kepler Repository
allows users to both upload and download workflow components to a
centralized server where they can be searched and re-used. For more
information about uploading actors to the repository, see Section 5.34

b. Save the actors as KAR files, which can be emailed and imported. See
Section 5.3.6 for more information.

Users interested in sharing the workflow must download the required actors
from the repository (or import the emailed KAR files into Kepler) in order for
the workflow to load properly. To search for and download actors from the
repository, select the remote repositories you would like to search from the
Tools > Preferences > Components tab, and then type in the name of the
required component in the Search field. The component will automatically
download when a user drags and drops the search result onto the Workflow
canvas. If the result is a KAR, you may right-click on it and select Download,
and it will be downloaded into your local Save repository (MyWorkflows/ by
default). For more information about opening a shared workflow, please see
Section 5.9.2.

5.9.2 Opening and Running a Shared XML Workflow

If a shared workflow contains only standard Kepler components (ones distributed
in the standard Kepler library), you can open and begin to use a shared workflow
immediately. If, however, a workflow contains components specifically designed for

174

Section 5

that workflow—or that exist in the Kepler Repository, but are not included in the
standard library—then those components will have to be added to the local Kepler
library before the workflow can be run.

A well-documented workflow will contain information about the names and
locations of any non-standard components required. In a perfect world, all
workflows are well documented; however, there may be times when one must
figure out what additional components are necessary, most likely by attempting to
run the workflow, and then studying the error messages (Figure 5.66)

Error

X

<entity name="HelloWorld" class="edu.tutorial kirsten,HelloWorld" >
9 ind class: ed arfal. kirsten.HelloWorld

Because:

Could not find 'edujtutorialfkirstenfHelloWorld. xml' or ‘edujtutorial/kirstenfHelloWorld. moml' using base

‘file:/C: /kepler-1.0.0beta3{demos/HelloWorldWorkflow.xml': in file:/C: fkepler-1.0.0beta3/demos/HelloWorldWorkflow. xml at line 83 and column 60

Caused by:

com.microstar,xml.XmlException: -- C:ikepler-1.0.0beta3\demostedultutorialikirsteniHelloWorld. xml (The system cannot find the path specified)

-- XML file not Found relative to classpath,

-- Ci\kepler-1.0.0beta3; edujtutorialfkirstenfHellowWworld. xml

edultutorialikirsteniHelloWorld. xml {The system cannot find the path specified)

in file:JC: /kepler-1.0.0beta3{demosjHelloWaorldWorkflow,xml at line 83 and column 60

[Skip element] [Skip remaining errors] [Display stack trace] [Cancel]

Figure 5.65: An error message that indicates that a workflow component is not available.

The error message in Figure 5.66 indicates that Kepler cannot find the HelloWorld
entity. The workflow that contains this actor will not run properly until the
component is located and made available to the workflow. Although the HelloWorld
workflow can be opened without the missing component, the workflow will not be
drawn correctly and will not run properly (Figure 5.67).

SDF Director

Mot iwlna Display

SOF Director

Dis play

Helloworld workflow HelloWorld workflow with
missing actor

Figure 5.66: Workflows that contain missing actors will not open correctly on the Workflow canvas.
Missing components can be found in the Kepler Repository. Click the “Sources”

button and click the checkbox in the “search” column next to “library.kepler-
project.org.” If Kepler finds the actor in the repository, the actor will appear in the

175

Section 5

actor tree, where it can be dragged and dropped to the Workflow canvas (Figure

5.68).

Unnamedl

(@ee>/Il[@=meikh e

[Components Data

3
& o

Preferences

Search Components
fQ \ C
<

e

Al Ontologies and Folders

@ Components
(3 Projects

E Statistics

| Workflows

] Actors-2_0
|| Directors-2_0
|| Opendap-2_0
[IR-2_0

¥y VvY¥ vy VvYyYVvYYYY

0 results found.

avw .

! Components Data]

The Component Library is built using KAR files found in the following local C
directories. Adding or removing local directories will rebuild the component
library.

By selecting the search box next to remote repositories, components from the
remote repositories will be included when searching components. &

(Add) (Remove) (Use Defaults) (Build)

Search | Save | Type | Name | Source
™] local Actors-2.0 JUsers/staggs/KeplerData/modules fact
E [} local Directors-2.0 | /Users/staggs/KeplerData/modules/dire
E [} local Opendap-2.0 | /Users/staggs/KeplerData/modules /ope
E [} local R-2.0 JUsers/staggs /KeplerData/modules/r-2
E E local Workflows JUsers/staggs /KeplerData/workflows
] 1 remote localRepository localhost:8080

=R
L] [} remote keplerDevRe... kepler-dev.nceas.ucsh.edu
O 1 remote indusRepository indus.msi.ucsb.edu

C J 4k

v
-

Figure 5.67: Locating missing components in the Kepler Repository.

176

Section 6

6. Working with Data Sets

Kepler workflows can read, parse, and manipulate data that is stored in a variety of
formats. From tabular data, such as local Excel tables saved as comma-delimited text
files, to data contained in remote databases, to streaming sensor data, Kepler can
incorporate a wide assortment of information using actors. For example, actors can
read data files, open database connections and access stored information, and
download and output data stored on the EarthGrid.

The EarthGrid, which is accessible from the Data tab, provides a convenient mechanism
for discovering, accessing, and sharing data. The EarthGrid allows scientists access to
ecological, biodiversity and environmental data and analytic resources (such as data,
metadata, analytic workflows and processors) networked at different sites and at different
organizations via the Internet. Currently, the EarthGrid consists of the KNB Metacat and
KU Digir databases, which can be searched individually or in combination via the search
form at the top of the Data tab.

Metadata, such as EML (Ecological Metadata Language) or ADN
(ADEPT/DLESE/NASA), describes data so that they can be easily understood by
both scientists and actors. Actors use the metadata to automatically configure
themselves with appropriate data output ports. Although not every data set contains
metadata, the benefits of working with metadata-described data sets quickly makes
the utility apparent. See Sections 6.2 and 6.3 for examples of a biomass workflow
constructed with EML data and without EML.

How data are incorporated into a workflow depends to a large extent on how the
data are structured and stored. Are the data locally available? Are the data described
by metadata? Stored in a database? Formatted as a table? In each scenario, different
actors can be combined to access the data and prepare it for use.

6.1 Data Actors

The standard Kepler component library contains a number of actors used to read,
write, and translate data for use in workflows. Whether data sets are stored on a
local machine, the EarthGrid, or another remote server, actors can be used to access
and output the information. Actors used to read and write data are easily recognized
by the peach-colored file or drum icon that represents them on the Workflow
canvas. Other useful data actors are noted in the table below (Table 6.1).

177

Chapter 6

Data/File
Access

Data/File Access actors do not have a persistent family symbol. Actors
belonging to this family read, write, and query data.

Data Access
Support

Data Access Support actors are generally used to open
and close database connections, or to send commands to
a data source.

Actors: Close Database Connection, Open Database Connection,
SRB Connect, SRB Create Query Conditions, SRB Create Query
Interface, SRB Get Physical Location, SRB Proxy Commands,
PhyloDataReader

Data Query

Data Query actors query data sources or metadata.

Actors: Database Query, SRB Query Metadata, Transitive Closure
Database Query

or

I

Reads/Gets/
Sources

Reads/Gets/Sources actors read data into a Kepler
workflow: files, images, or data sets.

Actors: Binary File Reader, Expression Reader, File Reader, File
To Array Converter, Image Reader, Line Reader, Simple File
Reader, NexusFileReader,

EML2Data set, Orb Image Source, Orb Packet Object Source, SRB
Get Metadata, SRB SGet, SRB Stream Get, DataTurbine

Read/Write

Read/Write actors read and write data from host servers.

Actors: FTP Client, Ecogrid Writer

or

Write/Put/
Sink

Write/Put/Sink actors write data to output files or sinks,
which store data for future use.

Actors: Binary File Writer, File Writer, Line Writer, Text File
Writer, Orb Waveform Sink, Orb Waveform Source

B NN |8

Data
Processing

Data Processing actors process data—converting data
from one format to another or extracting specified
values from a data set.

Actors: ClimateChangeFileProcessor, ClimateFileProcessor,
SProxy, Experiment Monitor, Xpath Processor, XSLT Processor,
Interpolator, Lookup Table, Record Assembler, Record
Disassembler, RecordUpdater, Vector Assembler, Vector
Disassembler, Polygon Diagrams Dataset, Polygon Diagrams
Transition, PAUPInfer, RecIDCM3, TreeDecomposer,
Treelmprover, TreeMerger, TreeParser

Table 6.1: Useful data actors

178

Chapter 6

6.2 Using Tabular Data Sets with Metadata

Although one might guess that the easiest way to incorporate data into a workflow
is via a simple tab-delimited text file, the most convenient way to access data is
actually with data sets described by metadata, or data that describes the data set.

Ecological Metadata Language (EML) is a broad metadata specification that was
originally developed by the ecology community, but can be easily used by other
domains. It is based on prior work done by the Ecological Society of America and
associated efforts (Michener et al, 1997, Ecological Applications). EML is
implemented as a series of XML document types that can be used in a modular and
extensible manner to document data. Each EML module is designed to describe one
logical part of the total metadata that should be included with any data set.1®

Other types of metadata commonly used on the EarthGrid are Darwin Core and ADN
(ADEPT/DLESE/NASA). The purpose of the ADN metadata framework is to describe
resources typically used in learning environments (e.g. classroom activities, lesson
plans, modules, visualizations, some data sets) for discovery by the Earth system
education community.2® The Darwin Core (sometimes abbreviated as Dw(C) is a
standard designed to facilitate the exchange of information about the existence of
specimens in collections and the geographic location where they were collected.
Extensions to the Darwin Core provide a mechanism to share additional
information, which may be discipline-specific, or beyond the commonly agreed upon
scope of the Darwin Core itself.21

Kepler has several actors designed to automatically download and output EML and
Darwin Core described data: the EML 2 Dataset actor and DarwinCoreDataSource
actor, which automatically download a data set and configure output ports to emit
each field of data.

Kepler's EML 2 Dataset actor understands EML.: the actor parses the meta information
when a data set is downloaded (or accessed locally), and emits data to downstream actors.
A sample set of EML-described data ("VVegetation Test Data™) for use with this manual is
on the KNB Metacat node of the EarthGrid. To access that data (or any data on the
EarthGrid), select the Data tab. In this case, we know the data are on the KNB Metacat
server, and we can narrow our search (and reduce the search time) by searching only that
data source (under Sources, deselect the KNB Authenticated Query and KU Digir source
(Figure 6.1).

19 KNB Website, http://knb.ecoinformatics.org/software/eml/
20 DLESE website, http://www.dlese.org/Metadata/adn-item/
2L TDWG Wiki, http://wiki.tdwg.org/DarwinCore

179

Chapter 6

The “Refresh” button on the Sources window allows Kepler to immediately synchronize
the application’s list of configured sources with all Earthgrid-registered sources. If
Kepler’s existing sources configuration should be preserved, the optional checkbox
allows the new and old to be merged upon refresh.

The KNB supports public searches as well as searches for access-restricted data
packages. If the Authenticated Query source is selected, a prompt for username,
password and organizational affiliation will be presented. Upon successful login, the
search will be performed, and both public and appropriately configured access-restricted
data packages will be returned. There is no need to search both the public and
authenticated sources simultaneously.

File Edit view ‘WorkFlow Tools Window Help

aaeFaP il myy e

Companents | Data | outline : orkflow
A
Search Data
ﬂl < Preferences E]@
e,
(Sources h Companents | Data
—
Service Mame Document Type
[kU DiGIR Guery Interface [Darwin Care 1.0
Ecological Metadata Language 2.0.0
KME Metacat Query Interface Ecological Metadata Language 2.01

Ecological Metadata Language 2.1.0

[Ecological Metadata Language 2.0.0
[KME Metacat Authenticated Query Interface | [] Ecological Metadata Language 2.0.1

[Ecological Metadata Language 2.1.0

|:| Keep existing sources
<

Figure 6.1: Customizing the sources to be searched. In the above example, only the KNB Metacat source
will be searched as KU Digir and the Authenticated Query have been deselected.

To find a data set, type its name or a portion of its name into the Search field and
click Search. The search may take several seconds. When complete, the search will
return a number of data sets that match the search query. Note the peach data drum
icon beside each data set; this icon indicates that the data can be accessed with the
EML 2 Dataset actor. In fact, dragging and dropping any of the data sets onto the
Workflow canvas instantiates an EML 2 Dataset actor that accesses the data (Figure
6. 2).

180

Chapter 6

K Unnamed1

M=%

File Edit Wiew ‘Workflow Tools wWindow Help

el myl e

Components | Daka | Outline

Search Data

test

[Sources ” Canicel

l

Main Cropping Syskem Experiment

Demag Test Data

Literature review on the use of matrix populatior
Testz

change permission on sanparks

test

testS

test ojbect name

test replication from datapha-sason-ac-za

testz

ARCHIYE-SBCLTER: Land: Watershed Character
Aboveqground biomass and nitrogen allocation of
Ant-plant dynamics: the effects of leaves and sc

-~

4
)| workflow

B

VegetatiE Test Data

Arrnikage MwsP 2005
Australian Frog Clutch Size Data

Ferdie 2002 NP Fertilization
<

50 results returned.

Axial hydraulic segmentation in shrubs-
Condit et al-: Growth and Mortality of tropical tre

v.
2 v
< | b

L

Figure 6.2: Dragging and dropping an EML-described data set onto the Workflow canvas instantiates an

EML 2 Dataset actor.

To open a local data set that is described by EML, simply drag and drop an EML 2
Dataset actor on to the Workflow canvas and configure the actor parameters to point to
the file name of the data source and its corresponding metadata file (Figure 6.3). The
EML 2 Dataset actor will automatically configure its output ports to correspond to the
fields described by the metadata.

The actor's parameters (Table 6.2) can be customized to access and output data in a

variety of ways:

EML File The file path of a local EML metadata file used to describe and
access an EML data set.

Data File The path to a local data file described by EML (must be used in
conjunction with a local EML file). The actor will retrieve the
data and automatically configure its ports to output it.

Selected If this EML data package has multiple entities, the

Entity selectedEntity parameter specifies which entity should be

output. When this parameter is unset (the default), data from
the first entity described in an EML package is output. This
parameter is only used if no query statement is specified, or if a
query statement is used and the output format is one of "As
Table", "As Byte Array", "As Uncompressed File Name", and "As
Cache File Name". To specify a query statement, right-click the

181

Chapter 6

actor and select Open Actor.

Data
Format

Output

The format in which the actor should output the data. See
section 6.2.2 for more information about the different data
output formats and how they are used.

File
Extension
Filter

A file extension that is used to limit the array of filenames
returned by the data source actor when "As UnCompressed File
Name" is selected as the data output format. Only files that
match the specified extension will be returned. Specify a file
extension without a leading period.

Allow
lenient
parsing

data

If this parameter is selected, "extra" columns of data (e.g.,
comments that people have entered on a line or something of
that nature) that are not described in the metadata are ignored,
allowing the workflow to execute. If the option is unchecked
(the default), the workflow execution will halt until the
discrepancy between the data and metadata is corrected.

Check
latest
version

for

Select this parameter to check the EarthGrid for updates to the
data. If the actor finds a version of the data that is more recent
than the cached data on your local system, the actor will
prompt the user to either download the latest data and
metadata or ignore the newer version. Note that different
versions of the data can have vastly different structures (new
columns, or even new tables of data might be included or
removed). If this parameter is selected, users should be
prepared to handle changes that might arise from differences in
the data structure.

recordid

(appears for downloaded data actors only) An identifier used to
retrieve the metadata from the EarthGrid. Typically, this
identifier is set automatically when a data package is dragged to
the Workflow canvas.

endpoint

(appears for downloaded data actors only) The endpoint is
used to retrieve data and metadata from the EarthGrid.
Typically, this parameter is left at its default value.

namespace

(appears for downloaded data actors only) The namespace sets
the type (and version) of the EML document used by
the actor.

Table 6.2: Parameters of the EML 2 Dataset actor.

182

Chapter 6

Edit parameters for EML 2 Dataset

\? / EML File: Browse
Data File: Browse
Selecked ERRy:
Data Output Format: As Field —
File Extension Fiter: I -
Allow lenient data parsing: o
Check for latest version: O
chass: org.ecoinformatics. seek. datasource, eml. emi2, Emi2000ataSource
semanticType0D: urn:lsid:locahost:onto: 1: 1 #ExternalinputActor
semanticTypell: urn:leid:locahost:onto:2: 1 #Locallnput
semanticType22: urn:lsid:locahost:onto:2: 1 #Remotelnput
semanticType33: urn:lsid:locahost:onto:2: 1 #XMLProcessor

[Commit] I Add } [Remove] [Rcstore Defauks] [Preferences] l Help I [Cancel]

Figure 6.3: Configuring an EML 2 Dataset actor to read a local data set described with Ecological
Metadata Language

After parsing a data set's EML metadata, the EML 2 Dataset actor automatically
reconfigures its exposed ports to provide one port for each column of data described by
the EML description. For example, the Vegetation Test Data metadata has twelve
attributes describing twelve columns of data: Date, Site, Web, Plot, QD, Species, Obs,
Cover, Height, Count, Phen, Comments. The EML 2 Dataset actor will therefore create
12 corresponding output ports. To view the metadata, right-click the EML 2 Dataset actor
and select Get Metadata from the drop-down menu. Scroll to the bottom of the
description to see the data attributes and more information about each (Figure 6.4).

183

Chapter 6

K/ file: /C: /Documents% 20and%20Settings/K. . .Vurn.tsid.localhost.e5797528.0.0. html =)=
Eil= Wiew Tools Help
Header Lines: !
Record Delimiter: #:02
Text Faormat: -
Maximum Record colurmn
Length:
Simple Delimited: Field Delimeter:,
Mumber Of Records: 11
Attribute Column Type Measurement MiSSinQAccura Accura
Definition of Measurement Domain Value i Y covera
Name Label Type Report Assessment
Value Code
DATE DATE Date of sample datotime RIS M/D DAY
Precisioni day
Enumerated
Domain
Cirder
Gz code EES—F’DMTS
Diefinition Diefinition
creosote
Source
Order
Code G gz:m
Definition Drefinition
Montosa
. Source
obserigﬁourj fram Oleler
SITE SITE sitepwsbiplntguad nominal Code.) Code_) J
hierarchy Definition DefinitionSavanna
Source
Crder
Code Code EF‘GP -
Definition Definition o ONS
grassland =
<] - E

Figure 6.4: A portion of the EML metadata for the Vegetation Test Data. The EML 2 Dataset actor creates
one output port for each defined attribute (DATE, SITE, etc).

The data are formatted as a comma-separated table containing observations of the height
and cover (among other things) of the species "ERPUS8." To preview the data, right-click
the actor and select Preview from the drop-down menu (Figure 6.5). The preview table
can be resized, or sorted by clicking the column headers. Sorting time increases for very
large data sets.

| £/ Vegetation Test Data Preview E]@
DATE SITE WEE PLOT Qb SPECIES OBS COVER HEIGHT COUNT PHEM COMMENTS
02/03/1999 |FPC 1E 1|ERPUS 1 0.5 4 13¥ &
02/03/1993 [FPC 1E 1[ERPUS H 0.1 H 16[v 1A
06/02/1999 |FPC 1E 1|ERPUS 1 0.5 & Z2|MN& &
06/02/1999 |FPC 1E 1|ERPUS 2 0.25 4 12|M& &
06/02/1999 |FPC 1E 1|ERPUS 3 0.1 3 10]M& &
06/02/1939 |FPC 1E 1|ERPUS 4 0.05 2 13|MNA &
10{07/1999 [FPC 1E 1|ERPUS 1 0.25 7 SF &
10{07/1999 [FPC 1E 1|ERPUS 2 0.1 7 Z2|F &
10{07/1999 [FPC 1E 1|ERPUS 3 0.01 2 31F &

Figure 6.5: A preview of the Vegetation Test Data data set.

When it is dragged to the Workflow canvas, the EML 2 Dataset actor automatically
downloads the data to the Kepler cache. If the data have already been downloaded, the
actor will access them from the cache.

Each time the EML 2 Dataset actor fires, it outputs one row of data via its ports. Rollover
an output port to see the name and type of the data output (Figure 6.6), or right-click the
EML 2 Dataset actor and select Configure Ports to customize the actor so that the port
names (which correspond to the name of each data item) appear on the Workflow canvas.

184

Chapter 6

Vegetatigm Test Data

B>

COVER, type:double

Figure 6.6: Roll over any port of the EML 2 Dataset actor with the cursor to open a tooltip containing the
name of the port and the type of the data it broadcasts.

To use the Vegetation Test Data to investigate relationships between plant volume and
biomass for the species "Erpu8,” simply locate the cover and height ports and
connect them to the input ports of a graphing actor (biomass is a function of the species'
cover percent and height over time) (Figure 6.7).

185

Chapter 6

K| Unnamed1 E]@
File Edit Yew ‘Workflow Tools

Window Help

eaHaP @ mmdce

Components |Data Cutline : ‘workflow |

(]
Search Components

:

SDEF Director
Advanced Search][Sources ” Cancel]

All Ontologies and Folders

v
-, Search Resuls [:'
=L Components
[=i-Diata Input

E---Rgmote Inpuk
E---Database Input Function
-

Test Data

Vegetati

SProxy
SRE Proxy Commands
—-Data Cperation B
= Mathematical Gperation

E---GeometricOperation -
@ Point In Polygon $Y :
(=-Data Oukput
é---Remote Cutput
:B---Datahase Output Funckion

w3 SProvy
SRE Proy Commands
[=-WorkFlow Cukput
[=-Graphical Oubput
[¥ Plotter
L) w0y Scope
=[] Statistics [+] [w]
14 results found. [il

i ¥

L]

Figure 6.7: An example workflow that uses an XY Plotter actor to plot the "cover" and "height" of the
example species, Erpu8.

XY Plotter

execution finished,

NOTE: Until the graphical output of the workflow in Figure 6.7 is customized, it
produces a somewhat unintelligible plot. Click the configure plot setting in the upper
right corner of the output graph to customize the graph (Figure 6.8).

186

Chapter 6

C .. XY Plotter g@

Tools Special Help

(=]

[}
@

=]) o

XY Plotter

1 1 1 1 1 1 1 1 1 1 1

000 005 010 015 020 025 030 035 040 045 050

Figure 6.8: The output of the workflow displayed in Figure 6.7. Click the configure graph button in the
upper right corner to customize the graph.

In the "Set plot format" dialog window, specify a title and an axis label. Deselect

"Connect" and select "dots" as the type of mark (Figure 6.9). Changes will be applied to
the current graph and to graphs produced in subsequent workflow runs.

187

Set plot format

? :
\../ Title:
% Label:

¥ Label;

Marks:

% Ticks:
¥ Ticks:

% Range:
Y Range:

Yegetation Volume

Cover Percent

Height Grid:

0.01,05 Stems:]

2.0,7.0 Connect: O
Onone Opoinks & dots O various) pixels Use Color:

Chapter 6

Lo

=]} %]

1

(=
KXY Plotter
Flle Tools Special Help
Vegetation Yolume
7-1 T ; T T ; T T T
6k
S5[
@
E
4 -
3- R
2- B - 3
A " A A A L A L A N
000 005 010 015 020 025 030 035 040 045
Caver Percent

0.50

Figure 6.9: Customizing the output of the XY Plotter actor.

6.2.1 Viewing Metadata

A data set's metadata can be viewed either from the Data tab or the Workflow
canvas. To view the metadata from the Data tab, right click the name of the data set,
and then click the Get Metadata option. The metadata will open in a viewing
window. To view metadata from the Workflow canvas, right-click the data actor icon
and select Get Metadata from the drop-down menu.

Metadata includes the name of the data set, the name of the data set owner, the
structure of the data (e.g., tab-delimited), the number of records in the data set, and
information about each field of data (name, type, date, etc).

6.2.2 Outputting Data for Use in a Workflow

188

Chapter 6

The EML 2 Dataset actor automatically configures itself with one output port for
each field of data described by the metadata. A data set that has four fields (date,
time, location, and species name) will, by default, "generate" an EML 2 Dataset actor
that has four output ports, each assigned the data type defined in the metadata (the
"location” port will have type "string", for example). The EML 2 Dataset actor can
also be used to unzip compressed data sets, and to output a data set in a number of
useful formats. Instead of outputting each field of data individually, the actor can be
configured to create one port that emits the entire data table at once in comma-
delimited format, for example. Specifically, the output format choices are: as table,
row, byte array, uncompressed file name, cache file name, column vector, or
column-based record.

To customize the output format of the data set, double-click the EML 2 Dataset actor
and select a format from the drop-down menu next to the Data Output Format
setting.

As Field: (the default) The EML 2 Dataset

actor creates one output port for each field Datos Meteorologicos
(aka column/attribute/variable) that is BATE
described in the EML metadata for the data TIME

set (Figure 6.10). If the Query Builder has _AIR
been used to subset the data, then only gE:(‘;
those fields selected in the SQL statement > WD

will be configured as ports (See Section WS

6.2.3 for more information about the Query ';g'["
Builder). SOL_SUM

Figure 6.10: An EML 2 Dataset actor customized
to output the Datos Meteorologicos data set as fields
(the default).

As Table: The data set will be output as a string that contains the entire data set (Figure
6.11). The EML 2 Dataset actor will configure itself with three output ports:
DataTable - the data itself, Delimiter — the delimiter used to separate fields (e.g.,
a comma or tab), and NumColumns - the number of fields in the table.

189

Chapter 6

SDF Director
Display Data Table

Datos Meteorologicos

B>
K. Display Data Table [Z@
Fie Tools Help
"DATE "’ ”TI,IE"I "T_AIRH’ IIRH", "DEI‘]”' "BAROM’ "UD", "US"’ MRAIN"I NSOL", HSOL_SUHM A

*01/01/01","00:00", 15.0,99, 14.5, 953.4,099, 0.8, 0.0,0000,0000000
"01/01/01","01:00", 13.4,99, 12.8, 953.8,100, 1.9, 0.0,0000, 0000000 f
"01/01/01","02:00", 13.4,99, 12.8, 954.0,114, 1.2, 0.0,0000,0000120

*"01/01/01","0D3:00", 12.4,99, 12.3, 954.3,114, 2.5, 0.0,0000,0000000

v

Figure 6.11: Using an EML 2 Dataset actor to format and output a data set as a table via a single output
port. In this case, the delimiter is a comma ",".

As Row: The EML 2 Dataset actor formats one row of the data set as an array and
outputs it. The actor creates only one output port (DataRow) and the data type is a
record containing each of the individual fields. (e.g., {BARO = 953.4, DATE =
"01/01/01", DEW = 14.5, RAIN = 0.0, RH =99, SOL = 0.0, SOL_SUM = 0.0, TIME =
"00:00", T_AIR =15.0, WD =99, WS = 0.8}.

As Byte Array: The EML 2 Dataset actor outputs the data set as an array of bytes (raw
data sent in binary format). The actor configures itself with two output ports:
BinaryData -- contains data itself, and EndOofStream -- a tag to indicate the end of
the data stream.

As UnCompressed File Name: If the data set is a compressed file (zip, tar, etc), the "As
UnCompressed File Name" format instructs the EML 2 Dataset actor to uncompressed
the data after it is downloaded. The actor will configure itself with one output port that
outputs an array of the filenames of the uncompressed archive files.

As Cache File Name: Kepler stores remotely downloaded data files into its cache system.
This format outputs the local cache file path of the data set so that workflow designers
can directly access the cache files. The actor configures itself with two output ports:
CacheLocalFileName - the local cache file path, and CacheResourceName — the
data set's EML identity (e.g., ecogrid://knb/tao.2.1).

190

Chapter 6

As Column Vector: This output format is similar to "As Field". The difference is that
instead of sending out a single value on each port, the EML 2 Dataset actor outputs an
array of all of the data for each field.

As Column Vector: This output format is similar to "As Field". The difference is that
instead of sending out a single value on each port, the EML 2 Dataset actor outputs an
array of all of the data for each field. This format is particularly useful when the output is
directed to an RExpression actor, which creates a vector object that is immediately
available for use in R the script.

As ColumnBased Record: The EML 2 Dataset actor outputs the data set on one port
using a Record structure that encapsulates the entire data object. The Record will
contain one array for each column of data, and the type of that array will be
determined by the type of the field it represents. This format is particularly useful
when the output is directed to an RExpression actor, which creates a dataframe
object that is immediately available for use in the R script.

6.2.3 Querying Metadata

At times, you may wish to use only a portion of the data in a given data set—only
records from May 2006, for example, or only records that relate to one of four
species tracked in a data set for a specific location. The EML 2 Dataset actor has a
built-in query builder that allows users to quickly and easily identify and output
only the desired fields of information.

To access the Query Builder, right-click the EML 2 Dataset actor and select Open
Actor from the drop-down menu (Figure 6.12)

191

Chapter 6

-

K| Query Builder

=0

General | 5oL

Available Table Schemas: | Datos Meteorologicos

Field Mame
=

Daka Type

DATE

STRING

TIME

STRING

T_AIR

FLOAT

INTEGER.

[rH
|[cEw

FLOAT

[Baro

FLOAT

INTEGER.

FLOAT

[Ram FLOAT ~

(%) Meets ALL included conditions lisked below () Meets ANY included conditions list below

Operatar Criteria

T

Table Field Data Type Include in Selection

[v] [a] O

[(074 l [Caniel

Figure 6.12: The Query Builder for the Datos Meteorologicos data set.

At the top of the Query Builder is a drop-down menu containing the name of each
data table in the data set (the Datos Meteorologicos data set contains only one table,
named Datos Meteorologicos). Beneath the table name is a list of the fields (as
defined in the metadata) in the selected table as well as the data type of each field.

Use the settings at the bottom of the Query Builder to select only the desired tables
and fields from the data set. For example, to select only the rainfall data from the
Datos Meteorologicos data set, select the "Datos Meteorologicos" table and the
"Rain" field and check the "Include in Selection" check box. (Figure 6.13). The EML 2
Dataset actor will reconfigure its ports to match the specified output. In this case,
the actor will configure a single output port for the Rain data. To include all data
fields in the selected table, select "*" from the drop-down Field menu.

192

Chapter 6

(%) Meets ALL included conditions listed below (O Meets ANY included conditions list below

Table Field Data Type Include i Selection Operator Criteria
Datos Meteorol... s | RAIN v [FLOAT ‘ v
v v O v

Figure 6.13: Configuring the Query Builder to output only Rain data.

The Query Builder can also be used to extract only data records that meet certain
criteria: values greater or less than a specified threshold, for example, or strings that
exactly match the name of a region or species or other value. To return the date and
temperature of all records from the Datos Meteorological data set where the
temperature is greater than 20 degrees, use the Query Builder settings displayed in
Figure 6.14.

(3) Meets ALL included conditions listed below () Meets ANY included conditions list below

Table Field Data Type Include in Selection Operator Criteria
Datos Meteoral... [+ | T_AIR v [FLOAT GREATER THAN | |20
Datos Meteoral... |+ | DATE w |STRING v/

b v/] v

Figure 6.14: Configuring the Query Builder to return only records in which the temperature is greater than
20 degrees.

When the Query Builder has been used to select particular fields or to specify
criteria for the records returned, those settings propagate to the Preview table when
it is displayed for the actor. This allows a view of exactly the data that will be used
during workflow execution.

6.3 Using Tabular Data without Metadata

In a perfect world, all tabular data sets would be described with metadata, and the
EML 2 Dataset actor could be used to automatically access and output data fields to
workflows. In the real world, data comes in many formats: Excel spreadsheets, old
tables created in Microsoft Word, or tables grabbed from Web pages. Kepler
workflows can read and process this kind of "raw" data, but because multiple actors
are required to do the work, this type of workflow is more complex.

Some actors that often come in handy are: Binary File Reader, Expression Reader, File
Reader, File To Array Converter, Line Reader, Simple File Reader, NexusFileReader
(Table 6.3).

Note that these actors can be used to open either a local or remote data file. In the

actor parameters, simply specify the URL of a remote file, or use the Browse button
to navigate to the location of a local data set.

193

Chapter 6

Binary File Reader

The Binary File Reader reads a local file path or URL
and outputs an array of bytes. The actor can read both
binary and ASCII file formats.

Expression Reader

The Expression Reader reads a file or URL, one line at a
time, and evaluates each line as a Kepler expression.
One evaluated result is output each time the actor
iterates.

File Reader

The File Reader actor reads a local file or URL and
outputs the contents of the file as a single string.

File To Array Converter

The File To Array Converter actor reads a file or URL,
evaluates each line, and outputs an array of the
evaluated values. The actor is similar to the Expression
Reader actor, except that the File To Array Converter
actor outputs all of the evaluated expressions as a single
array instead of outputting each value separately.

Line Reader

The Line Reader actor reads a file or URL, one line at a
time, and outputs each line as a string.

Simple File Reader

The Simple File Reader reads and outputs the contents
of a file as a single string. The actor is similar to the File
Reader, except that the Simple File Reader can only take
its input from another workflow component via an input
port, whereas the File Reader actor can use either a port
or parameter.

NexusFileReader

The NexusFileReader actor reads a Nexus file from the
local file system and outputs the file content as a string.

Table 6.3: Useful actors for working with tabular data sets with no metadata.

Once the data has been "read" into a workflow via one of the above actors, the data
will likely require parsing and further processing before it can be used. See Section
6.3.1 for an example of opening a local data file and preparing it for use in a

workflow.

6.3.1 Comma- Tab-, Text-Delimited Files

The plant volume workflow discussed in 6.1—which reads a data set, extracts two
columns of data, and plots them--can be recreated to run on data that does not use
metadata. In fact, the workflow displayed in Figure 6.15 is that workflow, recreated
to use a simple comma-delimited data table with no EML.

194

Chapter 6

Note that R actors can also be used to access tab or comma delimited data sets. See
Chapter 8 for more information about using R.

SDF Director

Expression

Line Re String Splitter XY Plotter

Expression To Token

Expression

Expression2

Figure 6.15: Recreating the plant volume workflow to use non-EML data.

The workflow in Figure 6.15 uses a LineReader to read the data file line by line and
output each row as a string. Double-click the Line Reader actor to specify the name
of the data file, as well as the number of lines to skip. In this case, we must skip the
first line of the data set, which contains header information instead of observational

data (Figure 6.16).

Edit parameters for Line Reader

?) fieorurL: -

_“‘/ : file: {1 fkepler/demosveg_data_test.csv
numberafLinesToSkip: 1
class: ptolemy, actar, lib.io LineReader
semankicType00o: urn:lsid:localhost;onko: 1 1#ReaderExternallnputactor
semanticTypelll: urn:lsid:localhost:onko:2: 1 #Lacallnput

Carnrit l [Add l [Remove l [Restore DeFauIts] [Preferences] [Help l [Cancel

Figure 6.16: Setting the parameters of the LineReader actor.

The Line Reader actor outputs each row of data to a String Splitter actor, which splits the
string into segments at points specified by the regular expression parameter ("," in this

195

Chapter 6

case, as each value in the data set is separated from the next with a comma). The String
Splitter actor outputs the segments as an array of strings.

A relation branches the array of string segments to two Expression actors, which use the
Kepler Expression language to identify the appropriate columns of data. Each of the
Expression actors has a user-defined input port named "input”. The expression contained
in the actors (specified via the actor's expression parameter) references the value
passed to the input port (the array of strings) using the syntax input (7) or
input (8). The parenthetical value indicates the array index of the string segment to
select (input(0) would reference the first column in the data set, input(1) the second, etc).

Before the selected columns of data can be graphed by the XY Plotter actor, they must be
converted from a string to a double—a data type that the XY Plotter actor understands.
The relevant data types are specified in the Configure Port settings of the Expression To
Token actor (Figure 6.17).

L S

| £ Configure ports for Expression To Token E]@
Marne Input | Qw.,. | Mok, Type Direction Show Marmne Hide Units

inpuk [] [] string DEFALLT Fi F

oukput [] [] double DEFALLT Fl Fl

(e] (oo

Figure 6.17: Configuring the correct input and output type for the ExpressionToToken actor.

Once the data have been converted to doubles, the XY Plotter can graph them. See
Section 6.2 for more information about how to customize the settings of the XY Plotter.

6.3.2 Accessing Data from a Website

Downloading and accessing data from a website is easily accomplished via Kepler's
URL To Local File actor. This actor receives a URL of a remote file as well as a name
that will be applied to it when it is stored on the local system (Figure 6.18).

196

Chapter 6

SDF Director

URL » P R R e
"hitp://www .kepler-project.orgitemplates...

URL To Local File

File
property("KEPLER")+"kepler-logo.png"

Display

File2
property("KEPLER")+"kepler-logo.png"

e .kepler-logo.png - Windows Picture and Fax Vie... E]@

‘3 Kepler
LY

00 =Ea0 | PP an| X2Hw

9

Figure 6.18: Using the URL To Local File actor to download a file (the Kepler logo) from a remote
website.

Once the remote file has been downloaded and saved to the specified location, the URL
To Local File actor outputs a Boolean value: true if the operation has been completed
successfully; false, if not. The workflow in Figure 6.18 uses the output of the URL To
Local File actor as a trigger that alerts the next actor that the file has been downloaded
successfully and is ready for further processing, in this case, display.

197

Chapter 6

6.4 Accessing Data Access Protocol (DAP) Sources

Kepler's OpendapDataSource actor can be used to access and output any Data Access
Protocol (DAP) 2.0 compatible data source. The actor retrieves the specified data and
automatically configures its output ports to match the returned variables so that data can
be fed to downstream actors.

DAP 2.0 data sources, much like Web pages, are accessed via a URL that references a
host and data file as well as (optionally) a specific subset of the data to return. The host
server returns the requested data variables as well as information about them: the variable
name and data type, a description, and any associated attributes. For more information
about DAP, please see http://www.opendap.org/.

The OpendapDataSource actor must be configured with the URL of the data source as
well as an optional constraint expression (CE). The constraint expression specifies the
subset of data to return. Using a CE can reduce the system resources required to transmit
data or reduce the number of dimensions of a data variable so that the data can be more
easily processed in Kepler. The number of dimensions of a variable, similar to the
number of dimensions of a matrix, represents the number of rows and columns of data.
Because Kepler cannot efficiently process large volumes of multidimensional data
objects (i.e., n-dimensional arrays, where n>2), reducing the dimensions is sometimes
necessary.

The example parameters displayed in Figure 6.19 use the CE '1at' to retrieve only
latitude data from a data set collected by the Fleet Numerical Meteorology and
Oceanography Center that contains five variables describing wind patterns: degree north
(lat), vector wind eastward component (u), Vector wind northward component (v), degree
east (lon), and time.

Edit parameters for OpendapDataSource

., Kepler firingCountLimit: 1
=% DAP2 URL:
- - http://test.opendap.org/opendap/data/nc/fnocl.nc

DAP2 Constraint Expression: lat

Metadata Options: No Metadata
class:

org.kepler.dataproxy.datasource.opendap.OpendapDataSource

semanticTypell: urn:Isid:localhost:onto:2:1#Remotelnput

firingsPerlteration: 1

If Cancel \ fr Help \ f Preferences \ (Res(me Defaul(s\, fr Remove \ fr Add \ lf Commit \

Figure 6.19: Configuring the parameters of the OpendapDataSource actor.

Based on the values of the DAP2 URL parameter and DAP2 Constraint Expression, the
OpendapDataSource actor configures its output ports to match the returned data. In the
above case, the actor creates a single output port for the 1at data (Figure 6.20). Note:
You must commit a valid URL before the actor will reconfigure its ports and provide
access to any data.

198

http://www.opendap.org/

Chapter 6

SDF Director

OpendapDataSource

>3 PW—L Nonstrict Test
lat, type:[double] B

Figure 6.20: The OpendapDataSource actor automatically configures its output ports to match the returned
data.

Data is returned as a record, which is automatically disassembled and output by the
OpendapDataSource actor as a one, two, or N (>2) dimensional array, represented in
Kepler by either a matrix (one or two dimensions) token, or an array token for
dimensions greater than two. To better accommodate N-dimensional arrays, use a
constraint expression to reduce the number of data dimensions to one or two so they can
be more easily stored and processed. For example, the variable u in the FNOC1 data
source used in the previous example contains three dimensions (time, lat, 1lon).
The CE 'u[0][0:16][0:20]" selects only the first element (index 0) for the first
dimension (time) while requesting all of the remaining elements for the second (lat) and
third dimensions (lon). See the www.opendap.org for documentation about the CE
syntax.

Note that the OpendapDataSource actor automatically 'disassembles’ the top most
record of returned data. However, some data sources contain nested hierarchies of
records many levels deep. When dealing with those data sources you will need to
use the Kepler Record Disassembler actor in your workflow to disassemble the
nested records.

6.5 Accessing Data from DataTurbine Servers

The DataTurbine actor can be used to access data from DataTurbine servers. Please
see http://dataturbine.org/ for details and documentation for the DataTurbine
software.

The actor has four input PortParameters: DataTurbine Address, specificChannel
Name, Start Time, and Duration.

Upon specification of the DataTurbine Address, the actor attempts to connect to the
server, and will generate output ports for the channels present (not including the
metric channels - those with names beginning with the underscore character). Also,
two other output ports will be created, channelNames and specificChannel. The

199

http://www.opendap.org/
http://dataturbine.org/

Chapter 6

channelNames port outputs an array of the channel names, and specificChannel will
output the data of the port specified on the specificChannel Name input port. Since
the channel output through the specificChannel output port may change during
workflow execution, the data is always typed String. The rest of the ports will output
data for the DataTurbine channels they reflect, with the data typed appropriately.
The output data format may be changed using the Output Data Type parameter,
either an array of x records (each record containing a timestamp and datapoint), or
arecord of 2 arrays (timestamps and data).

The Start Time input PortParameter, utilized when Sink Mode is Request or
Subscribe, specifies the beginning time of the data requested from the server.

Duration, also used by Request and Subscribe sink modes, specifies the number of
seconds of data requested.

Sink Mode may be Request, Monitor, or Subscribe. Request mode initiates a request
for a specific time slice of data. Subscribe mode starts a continuous feed of data for
the connected output port channels. Each block retrieved will be Duration time units
in length. Monitor mode is similar to Subscribe, but allows for continuous frames of
data without gaps.

The Reference parameter is used by Request and Subscribe modes. For Subscribe
mode, newest, oldest, absolute, next, or previous may be used. For Request mode,
absolute, newest, oldest, aligned, after, modified, next, or previous may be used.

absolute — The start parameter is absolute time from midnight, Jan 1st, 1970 UTC.
newest — The start parameter is measured from the most recent data available in
the server at the time this request is received. Note that for this case, the start
parameter actually represents the end of the duration, and positive times proceed
toward oldest data.

oldest — As newest, but relative to the oldest data.

aligned — As newest, but rather than per channel, this is relative to the newest for
all of the channels.

after — A combination between absolute and newest, this flag causes the server to
return the newest data available after the specified start time. Unlike newest, you do
not have to request the data to find out that you already have it. Unlike absolute, a
gap may be inserted in the data to provide you with the freshest data.

modified — Similar to after, but attempts to return a duration's worth of data in a
contiguous block. If the data is not available after the start time, it will be taken from
before the start time.

next — gets the data that immediately follows the time range specified. This will
skip over gaps.

previous — get the data that immediately precedes the time range specified. This
will skip over gaps.

200

Chapter 6

The Block Timeout parameter, specified in milliseconds, is the amount of time to
wait for data to become available. Use 0 for no delay or any negative number for an
infinite delay.

The Pad data gaps with nils parameter controls whether to attempt to identify and
pad gappy data with timestamp, nil pairs. As sample rate is unknown prior to
execution, and must be assumed during execution, at least 2 datapoints must be
retrieved for this function to be able to guess sampling rate, and thus fill in any
missing values. Having gaps filled in, and thus dealing with a static number of
datapoints for requests of different time slices of the same size, can be useful in
certain workflows.

6.6 Using FTP

The Kepler component library contains several actors that can be used to upload or
download files from remote servers: the FTP Client actor puts or gets files from a remote
FTP server (File-Transfer-Protocol is used to copy files from one computer to another
over a network), and the GridFTP, FileFetcher, FileStager, and UpdatedGridFTP actors
upload and/or download files from Globus servers, which use an authorization certificate
generated by the GlobusProxy actor (the GlobusProxy actor passes a proxy certificate
used to connect to the remote host).

The workflow in Figure 6.22 is used to upload a file from the local directory (the one in
which the workflow is stored) using the FTP Client actor. The FTP Client actor can be
used to upload or download a single file, multiple files, or a directory—simply pass the
desired files as a string (e.g., "C:\PleaseUpload\Notes.doc™) via the FTP Client actor's
arguments port. If the server requires a username and password, these values must be
specified in the FTP Client actor's parameters as well. The FTP Client actor outputs the
file path of the uploaded or downloaded file.

201

Chapter 6

SDF Director

FTPClient Display

/

String Constant

Figure 6.21: A workflow used to upload two files, specified with String Constant actors, to a remote server
using FTP.

The name of the operation (put or get), the mode (ASC or BIN), the remote host (e.g.,
dotnet.sdsc.edu), and path (/home/mydocs/), as well as username and password,
when relevant, are specified in the parameters of the FTP Client actor. Use "asc" (i.e.,
ASCII) as the mode when transferring plain text files. Use "bin" (i.e., Binary) for
everything else (MS Word files, images, etc).

The FileFetcher and FileStager actors work much like the Get and Put operations of the
FTP Client actor, only these actors upload or download a set of files from a Globus host
For more information about these actors, please see Chapter 7.

6.7 Using Data Stored in Relational Databases

Kepler has a number of actors that are especially designed to open and close
database connections, query databases, and retrieve information. Whether data are
stored in an Oracle database, MySQL, local or remote MS Access, or a number of
other supported database formats, information can be accessed by Kepler and used
in workflows.

To connect to an Oracle, MySQL, local or remote MS Access, DB2, MS SQL Server,
PostgreSQL, MySQL, or Sybase SQL Anywhere database, use an Open Database

202

Chapter 6

Connection actor. The Open Database Connection actor opens a database connection
using the specified database format and URL, username, and password. Once a
database connection has been established, the actor outputs a reference to the
connection. Actors downstream in the workflow can use this reference to access the
database.

For example, the workflow in Figure 6.23 uses an Open Database Connection actor to
open a connection to a remote Oracle database. The actor passes a connection
reference to a Database Query actor, which uses the connection to pass a query to
the database. A Display actor displays the query return.

SDF Director
® query: “select latdd londd simpleba from GRAVITY TABLE
where latdd between ™ + [athMin + “and * + [atMax + *
and londd between * + longMn + " and * + longMax
OpenDBConnection o latMin: "34 9%

Display e latMax “35°

AT

DatabaseQuery2

o longMen: "-120"

e longMax *-119*

Figure 6.22: Opening a connection to an Oracle database and using the Database Query actor to return
query results.

The database format and URL are specified in the Open Database Connection actor
parameters (Figure 6.24). The database location is specified in the following format:
host:port:sid,where sid is the name of the database space (e.g,
jdbc:oracle:thin:@129.108.20.225:1521:PDB1).

203

Chapter 6

-
Edit parameters for OpenDBConnection
_? / database format: Oracle I
databaseURL: jdbc:oracle:thin:@129,108.20,225:1521:PDB1
username:; geon
password: ?
firingsPerIteration: 1
[Commit] [Add] [Remove] [Restore Defaults] [Preferences] [Help] [Cancel]

Figure 6.23: The parameters of the Open Database Connection actor are used to specify the database
format, location, and log in credentials.

The Database Query actor can view the schemas in a database. The actor automatically
reads the schema definition once a connection to the database has been established
(Figure 6.25).

Edit parameters for DatabaseCuery2
2 ERUEType: '
11-(/ outputType: MoMetadatal [
query: BLE where latdd between 34,9 and 35 and londd bebween -120 and -119
schemalef: P ry

<tahle nsawe="GEON.BENCHMARE TAELE":>
<field name="BENCHMAREKID" dataType="VARCHALERZ"
<field name="3IO0URCEID" dataTyne="VARCHALRZ"/ />

</tablex

<table newme="GEQN.ES TAELE":>
<field name="BSMAME" dataType="VARCHLRZ"/ >
<field name="ESID" dataType="VARCHARZ"/>
<field name="ELEVATICON" dataType="NUMEER"/>
<field name="GRAVITYVALUE"™ dataType="NUHBER"/v'

<] 2]
outputEachRomwSeparately: I
firingsPerlteration: 1
Zommit; l l Add] [Remove] [Restore DeFauIts] l Preferences] l Help] l Zancel

Figure 6.24: Parameters of the Database Query actor.

To browse the available database tables and specify a query, right-click the
Database Query actor and select Open Actor. A Query Builder window opens (Figure
6.26) Use the Query Builder to view the data tables and specify query conditions.
The specified query will automatically populate the Database Query actor's query
parameter.

204

Chapter 6

'K Query Builder Q@\
General | SOL =i
Availsble Table Schemas: igrocks. agelevelookup v

Jarocks. ageleveliookup ~

Field Name ygrocks.all_poinks2 ! If
ygrocks .analyticalmethods

|

! ioton grocks bulkrockgeochemmethods
iavel L ygrocks.enclave

{ agrocks.fabric
I

jarocks. fecak
grocks.fetreatmentminerals |v

-

(@) Mests ALL included conditions lited below () Meets ANY included conditions kit below ‘

Table V Field Daka Type lnclbdé in Selection Operator Crieria ‘i

0| v] | @] v] |

=

Figure 6.25: Browse database tables using the Query Builder.

6.8 Using Spatial and Image Data

Kepler has a number of actors designed to work with image and spatial data. From a
simple jpg image to a high-resolution map of North America, Kepler can process,
manipulate, and display a wide variety of data types.

Actors used to process and display image and spatial data are easily recognized by

the map icon (spatial data) or the mountain icon (image data) that represents them
on the Workflow canvas. A list of useful actors are noted in Table 6.4

205

Chapter 6

GIS/Spatial GIS/Spatial Display actors display geospatial data.
m o
Actors: ESRI Shape File Displayer, GML Displayer
GIS/Spatial GIS/Spatial Processing actors are used to map and
Processing manipulate geospatial data.
Actors: Add Grids, Convex Hull, CV Hull to Raster, GDAL Format
Translator, GDAL Warp and Projection, Grass Buffer, Grass Hull,
Grass Raster, Grid Rescaler, Merge Grids, Rescaler, Interpolate,
GridReset, ShowL ocations
Image Image Processing actors are used to manipulate and
Processing convert image files.
Actors: ASC To Raw, Convert Image To String, 1JMacro, Image
Contrast, Image Converter, Image Rotate, Sting To Image
Converter, SVG Concatenate, SVG To Polygon Converter
Image Image Display actors display image files.
m o
Actors: Image Display, ImageJ

Table 6.4: Useful image and spatial data actors.

6.8.1 Working with Images

Displaying a locally stored image via a Kepler workflow can be accomplished with
one of several useful actors: Image/ or Image Display.

The ImageJ actor reads an image file name and opens and displays the image along with
a toolbar of image-processing options, which can be used to process the image (Figure
6.27). The name of the image file can be specified in the actor parameters or via the
actor's input port. The actor uses the ImageJ application to open and work with images.
ImageJ can be used to display and process a wide variety of images (tiffs, gifs, jpegs,
etc.) For more information about ImageJ, see http://rsh.info.nih.gov/ij/ and Chapter 8 of

the User Manual.

206

http://rsb.info.nih.gov/ij/

[ede Vew WiacHiow Todks Window e

@ @@@QEPII.#F#GDK?%O

Compords | Data {1 eemsmwmmwe== .
| ImageJ | | \magel mE <]
Search H H "y
| toolbar : Féle EGf Image Process Analze Plugins Window Help
b 5 e P & — { | | | |
mage -0 Bolglo=zng4 s Al aldles]l | |
[[] Search repostory & Suorng;o_o}—ﬁ_rﬁ- e T e T
| SOF Director
Il = @ seachresas @
= © Componerts
= @ oata Outpa
= @ Workflow Output
= @ Graghicsl Outpt Image.J
15 imaged
' Edit parameters for lmageJ 8]
|
\?/ C:\Doouments and Settings\KirstenlDesktop\kepler-400.£00
chass: utl Imagelactor
semanticType000: wnikad:locahost ionko: 1:1 2 imageManpulstiondctor
semanticTypel11: urn:kd:locahost :orko:2: | #GraphicalOutput
FringsPer Reration: 1
[Comet | [Add] [Remove | [Maeoefusj [Preferences] 1 Help || Concel J

s B s P ——

Flgure 6.26: Opening an image with the ImageJ actor. Specify the path of the i |mage to open in the ImageJ
parameters or via the actor's input port.

The Image Display actor reads an image token and displays the image on the screen.
Image tokens can be generated from image URLs using the Image Reader or the
Convert URL To Image actors. These actors read an image path (e.g,
C:\pictures\signature.jpg), and output the image as an image token, which can be
displayed and/or manipulated by other Kepler actors, such as Image Rotate or
Convert Image To String (Figure 6.28).

If the Image Display actor receives a sequence of images that are all the same size, it will
continually update the display with the new data. If the size of the input image changes,
the actor generates a new picture display.

IKt
SDF Director g.-
File Tools Help
z -
Image Rotate]
l age Reader Image Display
="

Figure 6.27: An Image Reader actor "translates" an image path into an image token, which can be
manipulated by the Image Rotate actor and then displayed by the Image Display actor.

207

Chapter 6

The workflow in Figure 6.27 uses an Image Reader actor to "translate” an image path
into an image token, which can be manipulated by the Image Rotate actor and then
displayed by the Image Display actor. The standard Kepler component library contains
several actors that can be used to process image tokens; the 1JMacro actor provides
access to an even wider variety of processing tools.

The workflow in Figure 6.28 uses an ImageJ macro to open an ASCII Grid file, a
Geographic Information System (GIS) format that neither the ImageJ or Image Display
actors support. This file format includes GIS information such as the longitude and
latitude and number of rows and columns of data at the start of the file, followed by pixel
data values in an ascii format. The IJMacro actor ignores the GIS information and
displays the pixel data as an image. The macro code is pasted into the macroString
parameter, and the image to process is either specified with a parameter or passed via the
input port.

K il -
File Edt View Workflow Tools Window Help
Comporerts | pata | 4 o
SDF Director
Search
[[] Search repostory
[Search ” Reset | Da!aPoml? — 1M
r{» property("KEPLER")+"libtestdata/garpH... L]
¥ © Components
+# £ Projects |
+ € piscpl gy Y
4 t ters for LM x
5 © R Edit parameters for [JMacro .
2 :
X MBCIootring: run("ASC TextReader”, "open= FILE "):
fileOrLRL: C:\kepler20070716\. fibjtestdatajgarp/HIK_NA_Mask.asc Browse |
class: wil, I Macro
semanticType000: wn:lsid:localhost :onko: 1 : 1 #ImageManipulationactor
1 semanticTypel11: wnilsid:bocalbost :onto: 111 #ReaderExternalinput Actor
0 results found| firingsPerTterstion: 1
D
S— [Comnmik] I Add | I Remove } [&cstorcodadts] [Preferences | { Help] [Cancel |
oxcmhonfndf-
Figure 6.28: The IJMacro actor can be customized to execute any Image)J macros. See

http://rsb.info.nih.gov/ij/ for more information about macros.

208

http://rsb.info.nih.gov/ij/

Chapter 6

The IIMacro actor can also be used with an RExpression actor to display a PDF file
(Figure 6.29).

SDF Director

RExpression

Constant
c{» property("KEPLER")+"/RData.pdf"

IJMacro

Figure 6.29: Using the 1JMacro actor to display a PDF file.
In the above workflow, the R function or script used by the RExpression actor is:

fn <- pdf file
pdf (file=fn,width=6,height=6)

plot(x <- sort(rnorm(47)), type = "s", main = "plot(x,
type — \HS\")")
dev.off ()

This R script creates an image in a PDF file format.

The I/Macro string is:

call("ij.IJ.runPlugIn”,"ij.plugin.BrowserLauncher", "fi
le:// FILE ");

This script calls the BrowserLauncher which, in turn, launches a PDF viewer to display
the PDF generated by the RExpression script.

See http://rsh.info.nih.gov/ij/macros/ for a library of macros that can be used with the
IJMacro actor (you can even use the actor to run a game of Pong!)

209

Chapter 6

6.8.2 Working with Spatial Data

Spatial data comes in a variety of forms and formats—from ESRI Shape files, which
contain a set of vector coordinates that represent non-topological geographic data, to
ASCII grids (such as the ones used for IPCC climate change data), to GeoTiff, DTED,
USGSDEM, and others. Some geospatial data in automated systems are described with
Geography Markup Language (GML), an XML-based encoding for geographic
information. Geospatial data may also be described using EML. Fortunately, Kepler has
a number of actors that can help open, display, and translate the variety of these formats
so that they can be compared, added, or otherwise manipulated. As with tabular data,
spatial data sets that contain metadata are far easier to work with. We will look at some
examples of both EML and non-EML spatial data sets in this section.

Spatial data files--depending on their extent and resolution—can be very large and may
require notable time to download and process. Most Kepler actors first check to see if a
data set has already been downloaded or if a requested transformation has already been
performed before initiating the download or transformation process. If the spatial data file
already exists in its desired form, the actors will access the data from the Kepler cache
rather than reprocessing the information.

The Ecological Niche Modeling workflows that are shipped with Kepler in the
outreach/resources/demos/ENM directory, contain a number of useful examples of spatial
data actors and manipulations. Many of these use the Geospatial Data Abstraction
Library (GDAL), an open source library of functions for reading and writing geospatial
data formats. For example, the GDAL_h1K_ NS.xml workflow (Figure 6.30) converts
two Lambert Azimuthal Equal Area coordinate system projections (one of North America
and one of South America) to a format that uses a latitude/longitude system, and then
changes the file format from GEOTIff to ASC raster grid. The converted files are
rescaled and then stitched together (“added”) to form a single map of the entire Western
Hemisphere. The actors in the workflow can be used to convert a wide variety of spatial
data files and formats.

Note that the data sets, Hydrolk North American -DEM and Hydro 1k South America-

DEM, are described by EML metadata, and can be downloaded from the EarthGrid and
output by the EML 2 Dataset actor discussed earlier in the chapter.

210

Chapter 6

SOF Eueclov

o ResultDiractory: property("KEPLER")+"libMestdala/garp/spatialLayers”

Hydro1k North American - DEM
BUSY

Array Element2 "
s GDAL Warp and Projection2 Map output by workflow

GDAL Format Translator2
Grid Rescaler2

North America Mask file
4» property("KEPLER"}+"libMestdata/garp/H...

Hydro1k South America - DEM Oplpat s Noth Amayes
BUSY % ResultDirectory+"/H1K_NAasc”

Array Element

Merge_North_South
GDAL Warp and Projection

GDAL Format Tranglator
Grid Rescaler

SA Mask

Southe America Mask file

property"KEPLER"}+"flibMestdata/garp/...
Qutput File - South America

+ ResultDirectory+"H1K_SAasc”

lJMacro

Merged Result Filename
* ResuliDirectory+"H1K_DEM_NSAasc"

Figure 6.30: The GDAL-h1K_NS.xml workflow. The first time the workflow is opened, the data source
actors (Hydrolk North America DEM and Hydrolk South America DEM) will show a "Busy" status as they
download data from a remote server. The initial download may take as long as 30 minutes. Once data is
stored in the local cache, the data are more immediately available. Because of the high resolution of the
data, this workflow requires 30-45 minutes to execute once the data are downloaded.

The GDAL Warp And Projection actor "stretches"” or "warps" geospatial projections from
one cartographic projection to another (in the GDAL-hlk NS workflow, the actor
converts Lambert Azimuthal Equal Area coordinate system projections to a format that
uses a latitude/longitude system). The actor uses GDAL to perform this operation. GDAL
is a translator library for raster geospatial data formats. For more information about
GDAL, see http://www.gdal.org/index.html.

The GDAL Warp And Projection actor's inputParams and outputParams
parameters specify the format for the coordinate system (Figure 6.31). The parameter
values must be of a form used by the GDAL Warp utility. See the -s_srs and -t_srs
parameters of the GDAL Warp utility for more information about accepted forms:
http://www.remotesensing.org/gdal/gdalwarp.htmi.

211

http://www.remotesensing.org/gdal/gdalwarp.html

Chapter 6

Edit parameters for GDAL Warp and Projection2
i d inout , .
- rj input params: +proj=laea +lak_0=45 +lon_0=-100 +x_0=0 +vy_0=0
output params: +proj=latlong
autput Farmat: GTiff
Cache options: Cache Files but Preserve Location b
I Carnrit l [Add l [Remove l [Restore Defaults] [Preferences] [Help l [Cancel l

Figure 6.31: The parameters of the GDALWarpAndProjection actor. inputParams and
outputParams must be specified in a format used by the GDAL Warp utility.

The GDAL Format Translator actor also uses the Geospatial Data Abstraction Library to
convert the file format of spatial data (in the GDAL-hlk_NS workflow, the actor
converts a GEOTIff to ASC raster grid). The output type, format, and cache options are
specified with the actor's parameters (Figure 6.32). The Cache options specify
whether the output should be copied to the cache ("Copy files to cache™), copied to the
cache as well as the directory where the input raster is stored (“Cache files but preserve
location™), or not cached ("No caching”). If "No caching" is selected, the actor will not
cache the translated file and will ignore all previously stored cache items. Select this
option to force the actor to perform a translation even if the input file was previously
translated and cached.

Edit parameters for GDAL Format Translator2
i d .
1./ output bype; Byke hd
output Format: BATGHH G
Cache options: Cache Files but Preserve Location hd
l Zommit;] [Add] [Remove] [Restore DeFauIts] [Preferences] [Help] I Zancel

Figure 6.32: The parameters of the GDALFormatTranslator actor.

Also of interest are the Grid Rescaler actor and the Merge Grids actors. The Grid
Rescaler actor ensures that spatial data files have a consistent resolution and extent.
Grid Rescaler parameters are used to set the x and y values for the lower left corner
of the output grid, the cell size, and the number of desired rows and columns (Figure
6.33). Either the "Nearest neighbor" or "Inverse distance" weighted algorithms can
be used to calculate output cell values. If the “Use Existing File” checkbox is
selected, the actor will check to see if a file with the output file name already exists.
If so, the actor skips all actions except for returning the existing file name (i.e., the
actor does not "re-translate” the source data). Selecting the "use Existing File"
parameter can help avoid lengthy rescaling calculations that have already been
completed in prior runs. If the checkbox is not selected, any existing output file with
the same name will simply be overwritten.

Note also the ‘use disk storage’ checkbox. If checked, disk files are used for
calculations, allowing the processing of very large data grids. If unchecked, all data

212

Chapter 6

is placed in memory (RAM), Under this option, calculations are much faster, but a
workflow may require more memory than is usually available.

Edit parameters for Grid Rescaler2
\? / xllcorner: -180.0
yllcorner: -90.0
cellsize: o.1
NUMFowWs: 1800
numcols: 3600
algorithim: Nearest Neighbor v [
outputFilehame: $ResuItDire"ctorwNewTest_NA.asc
use Existing File:
use disk storage (for large arids):
[Commit] [Add] [Remove] [Restore Defaults] [Preferences] [Help] [Cancel]

Figure 6.33: Parameters of the Grid Rescaler2 actor. Note that the "use Existing File" parameter has been
selected, instructing the actor to return the file name of an existing output file if one exists.

Merge Grid actors are used to combine two geospatial image files. The actor merges files
according to a specified merge-operation (e.g., average, add, subtract, mask, or
not_mask), and outputs the name of the merged file. The actor can be used to combine
several regions into a large region--combining a grid covering North America with one
for South America to create a raster grid for the western hemisphere, for example, or to
"mask" certain areas of the map that are not relevant for an analyses.

For more information about working with geographic information, see Chapter 8.

6.9 Using Gene and Protein Sequence Data

The workflow in Figure 6.34 demonstrates how to process genetic sequence data
retrieved from the DNA Data Bank of Japan (DDBJ)22. The sequence is saved in the
file sampleEntry.xml. The workflow displays the sequence in three different ways: in
its native format (XML), as a sequence element that has been extracted from the
XML format, and as an HTML document that might be used for display on a web site.
The latter two operations are performed using a composite actor that hides some of
the complexity of the underlying operations.

22 http://www.ddbj.nig.ac.jp/

213

http://www.ddbj.nig.ac.jp/

Chapter 6

SDF Director e datadir: property("outreach.workflowdir")+"demos/getting-started"

XML Entry Display

Sequence Getter Using XPath Sequence Display

XML Entry of Gene.' Sequence String

HTML Generator Using XSLT

HTML Display

HTML Qutput

'K/ Sequence Display E]
File Tools Help l‘

{<SEQUENCE>cacctggagaaacttotgoactggoac E"

K HTML Display M=)

File Tools Help |

<form method="post" ac KU XML Entry Display [;]E
<h>Progiy File Tools Help
Datall NOLECULAR FORM>1inear</MOLECULAR FORM?
QUeryl 1y s TONSEST</DIVISIONS>
<INPUT T | AST UPDATE>11-MAY-1997</LAST UPDATE>‘§
< | (L </ form:> = = .
</body></html> <DEFINITION>zk63d03.51 Soares_pregnant
<ACCESSION>AA045112</ ACCESS ION>
<VERSION>AA045112 .1</VERS ION>
| KR T <KEYWORDS>EST. </KEYWORDS>
v
< Tl B

Figure 6.34: Accessing genetic sequence data in an XML file. The workflow displays the XML format in
which the data is stored, the gene sequence, and an HTML document that could be used for display on a
web site.

The workflow in Figure 6.34 can be found in the

outreach/workflows/demos/getting-started directory, and step-by-step
instructions for using and recreating it are included in the Getting Started Guide.

214

Chapter 7

7. Using Remote Computing Resources: The Cluster,
Grid and Web Services

Grid computing has emerged as a dominant Internet computing model in the past decade.
The word grid was chosen by analogy with the electric power grid, which provides
pervasive access to power (Foster & Kesselman 1999), and captures the early grid vision
of providing unlimited access to computational power. Sharing is conditional and secured
yet dynamic, and includes peer-to-peer access, where individual nodes are capable of
acting as both client and server. Data grids enable sharing of data and information
resources, while computational grids support data-intensive computing. A service is a
component within the model that provides a particular function through a simple remote
invocation mechanism. Through the introduction of Web and Grid services, many new
resources for different scientific domains are becoming available. 23

Grid technologies have captured attention because of their capability of providing
interactive collaboration between widely dispersed individuals and institutions,
global data management services, and sharing of computational resources (Foster et
al. 2001). The Grid provides mechanisms for harnessing computational resources,
databases, high speed networks and scientific instruments, allowing users to build
innovative virtual applications. Such virtual applications are synthesized by
combining different components on multiple computational resources. 25 A very
common scenario is the following: a user needs to copy (or stage) a set of files from
one resource (e.g., the local environment) to a remote resource, run a computational
experiment on that remote resource, and then fetch the results back to the local
environment or copy them to another resource/database. 26

Kepler has a number of actors that allow scientists to access remote resources in
many useful ways—from the Web Service actor, which can execute a remotely
stored application, to the suite of SRB actors that facilitate remote data storage,
search, and access, to the Globus actors that allow users to send a job to a host for
remote processing. In this chapter, we will look at a number of examples of scientific
workflows that use various types of grid actors to take advantage of the increased
processing, storage capacity, and resources provided.

23 Foster, L. and C. Kesselman (1999). The Grid, Blueprint for a New Computing Infrastructure .
Morgan Kaufmann Publishers, Inc.

24 Foster, I, C. Kesselman and S. Tuecke (2001). The anatomy of the Grid: enabling scalable virtual
organizations. International Journal Supercomputer Applications, 15, 200-222.

25 Abramson, David, Jagan Kommoneni, and Ilkay Altintas. Flexible IO Services in the Kepler Grid
Workflow System. First International Conference on e-Science and Grid Computing (e-
Science'05) pp. 255-262.

26 [. Altintas, A. Birnbaum, K.K. Baldridge, W. Sudholdt, M. Miller, C. Amoreira, Y. Potier, B.
Ludaescher. A Framework for the Design and Reuse of Grid Workflows. in Proceedings of
Scientific Applications of Grid Computing: First International Workshop, SAG 2004, in series
Lecture Notes in Computer Science, pp. 119-132. Springer-Verlag GmbH, 2005. ISBN 3-540-
25810-8.

215

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/e-science/&toc=comp/proceedings/e-science/2005/2448/00/2448toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/e-science/&toc=comp/proceedings/e-science/2005/2448/00/2448toc.xml

Chapter 7

Notes: Globus actors introduced in sub-section 7.1.3 and 7.3.2 are not included in
default installation of Kepler 2.0. These actors may also be updated according to
new Globus Toolkit versions. The detailed documentation on the up-to-date status
of these actors and how to add these actors into Kepler 2.0 can be found at
https://kepler-project.org/developers/interest-groups/distributed /technical-
documentation/enable-globus-actors-in-kepler-2.0.

7.1 Data Movement and Management

Access and management of remote data are basic functions in distributed Grid
computing. There are several methods for moving data from one location to
another, e.g., GridFTP, SRB put/get, scp, and others. GridFTP is a secure data transfer
protocol optimized for wide-area networks. The SDSC Storage Resource Broker
(SRB) is a client-server middleware that provides a uniform interface for connecting
to heterogeneous data resources over a network and for accessing replicated data
sets, e.g., based on metadata attributes. scp is a shell command that allows users to
copy files between systems quickly and securely, without the need for expertise in
Grid systems. Such a tool can be as helpful in some workflows as any of the other file
transfer mechanisms, even for data that will be used by a Grid job.2”

In this section, we will look at an example of each of these methods for moving data
around on the grid.

7.1.1 Saving and Sharing Data on the EarthGrid

The EarthGrid is a distributed network providing scientists access to ecological,
biodiversity, and environmental data and analytic resources. The grid can be used to store
data, or to model or analyze it via remote EarthGrid services.

To search the EarthGrid for data sets, type a query into the Search field under Kepler's
Data tab. Kepler will automatically download the dataset and output it in the specified
format when the data set is dragged onto the Workflow canvas. For more information
about downloading EarthGrid data sets, please see Chapter 6.

To upload data to the EarthGrid, use the EcogridWriter actor, which writes a data file and
the EML metadata describing that data file to a remote grid repository. Ecological
Metadata Language (EML) is a standard set of terms and definitions used to describe
ecological data?®. For example, EML metadata might contain information about a data
set's units of measurement, date of collection, location, etc. Although an EML schema
document can be quite complex, several easy to use tools have been created specifically

27 http://users.sdsc.edu/~ludaesch/Paper/sag04-kepler.pdf
28 EML specification, http://knb.ecoinformatics.org/software/eml/eml-2.1.0/index.html

216

https://kepler-project.org/developers/interest-groups/distributed/technical-documentation/enable-globus-actors-in-kepler-2.0
https://kepler-project.org/developers/interest-groups/distributed/technical-documentation/enable-globus-actors-in-kepler-2.0
http://users.sdsc.edu/~ludaesch/Paper/sag04-kepler.pdf
http://knb.ecoinformatics.org/software/eml/eml-2.1.0/index.html

Chapter 7

to help users create EML: Morpho, available from
http://knb.ecoinformatics.org/software/index.jsp .

The workflow in Figure 7.1 is used to write a data file (build.xml) to the EarthGrid. The
name of the data file is passed to a MetadataSource actor, which integrates EML
metadata with a data file and then sends the package to the EcoGridWriter.

SDF Director

Display
String Constant ; ;
.g - Metadata Source Ecogrid Writer
[{> build-area/build. xml
String Constant? /
t%' test workflow Display?2

Figure 7.1: Writing a data file to the EarthGrid

In addition to the name of the data file, the MetadataSource actor can receive up to
two optional strings through its parameterl1In and parameter2In ports.
These values, if specified, will replace the substrings ' PARAM1_' and '_PARAM2_' in
the metadata, allowing things like the package title or id to be dynamically changed
in a workflow. The EML metadata is pasted into the MetadataSource actor's
parameters (Figure 7.2)

217

http://knb.ecoinformatics.org/software/index.jsp

Chapter 7

Edit parameters for MetadataSource

2 ; ‘
\-‘/ XML Metadata: <?xml version="1.0"2>

~

<eml:eml packageld="asdf.4.1" system="knb" xmlng

<dataset> 3
<title>(_PARAM1 Minimal Package with Data</i
r> el

<creato r7idualName><surName>Higgins</surl
<abstract><para>This is an abstract of the pack
<contactr><individualName><surName>Higgins</surll
<access authSystem="knb" order="denyFirst"><all«
<dataTable id="1117749528859">
<ent,ityName)-TestTablle(/ent,it:yNamebv [s]
£ | >

firingsPerIteration: 1

[Commit] [Add J [Remove] [Restore Defaults] [Preferences] [Help J [Cancel]

Figure 7.2: EML metadata is pasted into the MetadataSource actor's XML, Metadata parameter. The
text PARAM1 _ will be replaced with the value passed to the actor via the parameter1In port ("Kepler
Workflow Title™).

The EcoGridWriter actor connects to the EarthGrid using a user's credentials, which
are input via the actor's parameters (Figure 7.3). You must register with KNB in
order to upload data. To register, please go to http://ldap.ecoinformatics.org/cgi-
bin/ldapweb.cgi?cfg=knb. Type your user name after uid in the userName
parameter, and your organization after the o and specify your password for the
passWord parameter beneath.

Edit parameters for EcoGridWriter
_a/ metadatabestination: hitp: ffecoagrid. ecoinformatics, orgiknbfservices PutService
authenticationlRL: http:fecaqrid. ecoinformatics. orgiknb/services futhenticationService
userfdame: uid=tao,0=MNCEAS, dc=ecoinformatics, dc=arg
passiWaord: enter password here
Zommit] [Add] [Remove] [Restore DeFauIts] [Preferences] [Help] [Zancel

Figure 7.3: Enter username and password to access the EarthGrid

The EcoGridWriter actor outputs the doc ID of the metadata and data file (e.g.,
doc.1190394793046.1 and doc.1190394793078.1), which can be used to reference the data
in the future. Once a data set is uploaded, you or your colleagues can access it via
Kepler's data tab. Simply search for the data set by its title, or a portion of the title
(Figure 7.4).

218

http://ldap.ecoinformatics.org/cgi-bin/ldapweb.cgi?cfg=knb
http://ldap.ecoinformatics.org/cgi-bin/ldapweb.cgi?cfg=knb

Chapter 7

VNN IE AL JRIPEIEIED

I Components Data Outline | » Workflow
Search Data-
(@ minimal) (search

Sources Cancel

Minimal Package with Data

Minimal Package with Data 1

Minimal Package with Data 2 SDF Director

Minimal Package with Data 3

Minimal Package with Data 4

Minimal Package with Data 5

Minimal Package with Data 6

Minimal Package with Data 7 Display
Minimal Package with Data & String Constant Ecogrid Writer

M | Pack ith Data 9 - - Metadata Source
inimal Package with Data > build-area/build.xml /

Minimal Package with Data 10
Minimal Package with Data 11 N

rin nstant2
Minimal Package with Data 12 String Constant

Minimal Package with Data 13 > test workflow Display2
Forest patch size, land use, and mesim-:
acuitmant ineficilaner |
20 raculte raturnad |
4 o M) Edit parameters for Metadata Source
- XML Metadata: <7xml version="1.0"7> .
= <eml:eml packageld="asdf.4.1" system="knb" xmIns:eml="eml://ecoinformatics.org/eml-2.0.0" xmlns:m
o <dataset>
] <|i(|e Jtitle>
IS <creator> <individuatames <surName>Higgins </surName> < /individualName> </creator>
<abstract> <para>This is an abstract of the package</para> </abstract>
<contact><individualName> <surName>Higgins </surName> </individualName> </contact>
<access authSystem="knb" order="denyFirst"> <allow> <principal >public </ principal> <permission>read v
<dataTable id="1117749528859"> ki -
<entityName>TestTable</entityName> X Lz
% aln

Figure 7.4: Searching for a dataset uploaded to the EarthGrid. In this case, the title of the dataset (specified
in the metadata) is "Minimal Package with Data."

7.1.2. Secure Copy (scp)

Sometimes the easiest way to move data from one place to another is with a simple
scp ("secure copy") command. You can use the ExternalExecution actor to call a local
scp program, or use the SSHFileCopier actor to securely perform the file transfer
(Figure 7.5). Note: Windows users may need to install 3rd party software in order to
use scp.

SDE Director ® Source: local:a.txt

e Target: localhost:22:/tmp/sshfilecopierexample.dat

SSH File Copier Display
source SuCC .. Expression

Figure 7.5: Using the SSHFileCopier actor to securely copy files.

The SSHFileCopier can be used to copy files and directories to or from a path. Either
the source or target can be a remote path in the form
[[user@]host[:port]:]lpath (e.g, Jjohn@farpc:/tmp/foo.txt or

219

mailto:john@farpc:/tmp/foo.txt

Chapter 7

john@farpc:2222:/tmp/foo.txt) . The other path must be a local path in
the form "local:path" or simply "path" (1ocal:foo.txt or foo.txt). Both the
source and target are specified in the SSHFileCopier actor's parameters (Figure 7.6)

Local paths are either relative to the user's home directory (when specified
local:path) or the current directory (when specified simply by a path).

To copy a directory, you must check the SSHFileCopier's recursive parameter
(Figure 7.6). If the target path is empty, it is replaced with "."

Edit parameters for SSH File Copier @
? . . .

gy source: john@Farpc:data
target: ~dacal:bar Ext"
class: org.kepler.actor . ssh.FileCopier
semankicType00: wnilsid:bocalhost:onto:1: 1 #ExternalExecutionEnvironment Actor
semanticTypell: urnilsid:localhost:onko:2: 1 #UnixCommand

£ comme || Add || Remove | [RestoreDefaults | | Preferences || Hep | [cancel |

Figure 7.6: Check the recursive parameter if copying a directory.

An actor, called GenericFileCopier, is to copy files/directories between a local and
remote machine or between two remote machines, using scp, sftp, bbcp or srmlite
protocol. The actor uses the SSH protocol to connect to remote hosts. As shown in
Figure 7.7, the workflow will copy file from windows machine to remote Linux
machine with setting_; the protocol parameter as ‘scp’.

SDFDirector

Source File
[1'> d\testCopyiMest.txt

GenericFileCopier

StringConstant2
#:» fulhome2fjianwultestitestCopyltest-3.txt

Figure 7.7: Using the GenericFileCopier actor to securely copy files.

220

Chapter 7

7.1.3 GridFTP

A leading Grid software is the Globus Toolkit developed by the Globus Alliance, which
addresses the common problems that arise when building distributed-system services and
applications: security, information infrastructure, resource management, data
management, communication, fault detection, and portability. The ToolKkit's core services,
interfaces and protocols allow users to access remote resources as if they were located
within their own machine room while simultaneously preserving local control over who
can use resources and when. 2

GridFTP is a high-performance, secure, reliable data transfer protocol optimized for
high-bandwidth wide-area networks. It is developed by the Globus Alliance and is
based upon the Internet FTP protocol. GridFTP uses basic Grid security on both
control (command) and data channels. Other features include multiple data
channels for parallel transfers, partial file transfers, third-party (direct server-to-
server) transfers, reusable data channels, and command pipelining. For more
information, please see the Globus website,
http://www.globus.org/grid software/data/gridftp.php.

The Kepler component library contains several actors that can be used for GridFTP:
FileFetcher, FileStager, GridFTP, UpdatedGridFTP and GridFTPCopy. The
FileFetcher and FileStager actors work much like the Get and Put operations of the
FTPClient actor, only these actors upload or download a set of files between the local
system and a remote Globus host. The GridFTP and UpdatedGridFTP actors are used to
fetch and stage files from and to any Globus host (i.e., not necessarily the local system).

In order to access the Globus machine, the FileFetcher and FileStager actors must
use a proxy certificate provided by the GlobusProxy actor (Figure 7.8). A certificate
allows the actors to access the Grid. To generate a certificate, users must have a
Globus user certificate and key. These credentials are issued by a trusted Grid
authority, called a Certificate Authority (CA) and are stored on your local system
(usually as "usercert.pem" and "userkey.pem"). The GlobusProxy actor references
these credentials with its parameters (as well as an optional passphrase used to
decrypt the key file) and uses them to create a proxy certificate, which is used by all
downstream Globus actors.

291, Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP International
Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.

221

http://www.globus.org/
http://www.globus.org/
http://www.globus.org/grid_software/data/gridftp.php

Chapter 7

SDF Director

Globus Proxy

File Fetcher

Display

String Constant
|§ [TEMPAem p b/ TEMPAem p him I/ TEMPAmp |

Edit parameters for Globus Proxy .‘
\?/ cert file: C:\globusiusercert, pem Browse
key fle: C:\globes\userkey . pem Browse
passphrase: -
class: org.reviworkflow. GlobusProxy
semanticType000: urn:ksid:localhost:onko: 1:1#GridFunctionActor
semanticTypelll: urn:lid:localhost:onto:2: 1 #GridFunction
[Commk] [Add] [Remove] [Rcstore Defauits | [Preferences] [Help | I Cancel J

Figure 7.8: The FileFetcher actor uses a proxy certificate provided by the GlobusProxy actor to fetch files
from a Globus server.

In the workflow in Figure 7.8, the files to fetch are specified via the FileFetcher actor's
filesToGet port. A StringConstant actor specifies the names of three files. Multiple
files are separated by a semicolon *;"

The FileFetcher actor stores the fetched files in the location specified by its
DestinationDirectoryPath parameter and outputs the file paths of the fetched
files once the operation is complete.

The GridFTP and UpdatedGridFTP actors can also be used to fetch and stage files to a
Globus server, only the files to fetch are specified as parameters (Figure 7.9) and the
actors can be used to move files between any two Globus hosts. The Full path
to source file parameter specifies the name of the file to fetch, and the Full
path to destination file parameter specifies the location in which to put
the file. In addition, the Source hostname and Destination hostname
parameters specify the names of the Globus hosts to fetch from and save to,
respectively. The GridFTP and UpdatedGridFTP actors also require a certificate
generated by the GlobusProxy actor. The certificate must be provided via the actor's
input port.

222

Chapter 7

Edit parameters for GridFTP
2 Source hostnarme: "ri "

»._"(/ 8 griddle, sdsc, eduy’
Full path ko source File: "letc/passwd"
Destination hostname: "o albost”
Full path ko destinatian File: " ftrp/passwd., griddle”
class: org.nmivwarkflow . GridF TR
semanticType0: urreIsid: o org.nr!'uwnrllcﬂ::-w.GrldFTP iondckor
semanticTypell: urrlsid:localhost:onko: 2: 1 #wWebService
semanticTypez2: urrlsid:localhostonka: 2: 1 #GridFunckion

I Zornmit] [Add] [Remote] [Restore Defaults] ’ Preferences] ’ Help] [Zancel

Figure 7.9: The parameters of the GridFTP actor.

The parameters in Figure 7.9 specify that a file (/etc/passwd) from the remote
Globus host "griddle.sdsc.edu” be fetched and stored on the local system. Note that
files can be fetched and placed on any Globus host—one could, for example, fetch
files from one remote host and place them on another remote host.

The GridFTPCopy actor can also be used to fetch and stage files to a Globus server,
only the files to fetch are specified as parameters (Figure 7.10) and the actors can be
used to move files between any two Globus hosts. The difference between this actor
with the above actors is that the credential needs to be given by MyProxy actor (the
detailed MyProxy actor can be found at section 7.3.2.1). The Full path to source file
parameter specifies the name of the file to fetch, and the Full path to destination file
parameter specifies the location in which to put the file. In addition, the Source Host
and Destination Host parameters specify the names of the Globus hosts to fetch
from and save to, respectively. The output of the actor is the full path to destination
file.

SDF Director

MyProxy

Source Host
t]'> griddle.sdsc.edu

GridFtpCopy
Full path to source file

Destination Host
> localhost

Full path to destination file

File Writer
—

Figure 7.10: The GridFTPCopy actor uses a proxy certificate provided by the MyProxy actor to fetch
files from a Globus server.

223

Chapter 7

7.1.4 Storage Resource Broker (SRB)

The SDSC Storage Resource Broker (SRB) is a Grid storage management system
providing data access, transfer, and search functionality, as well as persistent
archiving (usually for files). Every user has a home directory (or "collection") where
the user can read, write, or create-sub collections; users grant permission to their
home collection to other users. In addition, project-level collections can be shared
by users and groups. SRB collections use a "logical name space" that maps logical
paths consisting of collections (directories) and individual data objects (files) to
physical files stored on different devices. Users see and interact with the logical
paths, and the physical location is handled by the SRB system and administrators.
Files and datasets have associated metadata, which determine where the data are
physically located and who has access to the data, as well as user-defined metadata,
which contains information about the data. For more information about SRB and its
integration with Kepler, see http://www.sdsc.edu/srb/index.php/Main Page and
http://www.sdsc.edu/srb/index.php/Kepler.

To get data from an SRB system, use the SRBSGet, SRBStreamGet, or SRBGetMetadata
actors. The SRBSGet actor fetches data files from an SRB system, the SRBStreamGet
actor reads a file stored on an SRB system and outputs its contents as a series of bytes,
and the SRBGetMetadata actor retrieves and outputs (as a string) user-defined metadata
for a SRB dataset or collection. To upload data to an SRB system, use the SRBSPut or or
SRBStreamPut actor.

Users must have a valid SRB account in order to connect to the SRB system and use the
SRB actors. To obtain an account, contact your local SRB system administrator. If you
do not have a local administrator, applications can be made to srb@sdsc.edu. To use
these actors, users usually also need make sure that both the SRB host server and
resource server, which are specified at the srbHost and srbDefaultResource attribute of
the SRBConnect actor, are running. One way to test these servers is using SRB client
commands http://www.sdsc.edu/srb/index.php/Scommands.

All workflows using SRB actors require an SRBConnect actor, which connects to a SDSC
Storage Resource Broker (SRB), where users can upload, download, or query data. The
SRBConnect actor connects to an SRB file system and returns a reference to the system.
This connection reference can be propagated to all actors accessing the SRB workspace,
allowing the actors to access the SRB system. The actor requires the user to specify
account information in the connection parameters (Figure 7.11).

224

http://www.sdsc.edu/srb/index.php/Main_Page
http://www.sdsc.edu/srb/index.php/Kepler
mailto:srb@sdsc.edu
http://www.sdsc.edu/srb/index.php/Scommands

Chapter 7

Edit parameters for SRBConnect

\:;':/ srbHast: stb.sdsc.edu
stbPort: 7510
sthlsertame: rmylserMame
stbPasswd: myPassword
stbHomeCollection: Jpzonefhorme myllserMarme . sdsc
stbfMdasDarmainHorme: sdsc
stbDefaultResource: sfs-tape-sdsc
firingsPerTkeration; 1

Zormmit] [Add l [Remove l [Restore DeFauIts] [Preferences] [Help] [Zancel

Figure 7.11: Example of SRBConnect actor's parameters and settings.

The srbHost, srbPort, srbUserName, srbPasswd, srbDomainHome,
and srbDefaultResource parameters specify user account settings, which are
emailed to users when the SRB account is first set up. If you need this account
information, please contact your local SRB system administrator. The
srbHomeCollection parameter specifies the path to the home collection. Each
SRB-registered user has a home collection, where the user can read, write, create-
sub collections, and grant access permissions. In general, the SRB home collection is
specified in the following format: /home/<username>.<domain>.

The workflow in Figure 7.12 uses an SRB connection generated by an SRBConnect
actor to copy a file from an SRB file system to a local directory. If successful, the
SRBSGet actor outputs the status (i.e., "success") via its exitCode port. The file
path of the fetched file is output by the fetchedFiles port.

SDF Director

SRB SGet
File to fetch

SRBFileSystem
q» “lpzonehomel/kepler dev.sdsciestaccept..

Local directory for fetched file

Figure 7.12: A workflow that copies a file stored on an SRB host to the local system. The path to the file to
fetch is specified by a StringConstant actor labeled "File to fetch".

225

Chapter 7

The SRBStreamGet actor works similarly to the SRBSGet actor, only it outputs the SRB
file as a sequence of bytes. To view the user-defined metadata associated with a data file
stored on an SRB host, used the SRBGetMetadata actor. Metadata describes the data and
might contain information about unit systems used by the data, for example, or the extent
of the geographic area from which it was collected.

To write data to an SRB host, use the SRBSPut or SRBStreamPut actor (Figure 7.13).

SDF Director

SRB Connect
SRBFileSystem

Display2

Dataset to upload
* EcogridWriterTest.xm|

SRB SPut
uploadedFiles

Display

Remote Directory

"fpzone/home/kepler_dev.sdsc/

Figure 7.13: Using the SRBPut actor.

In the above workflow, the SRBConnect actor is used to create a connection to the
SRB server. You must have an SRB account. To request an account, or if you require
help with an existing account, please see the SRB website.

The name of the dataset to upload to the remote server as well as the directory in
which to place it are specified with constant actors (Dataset to upload and Remote
Directory, in the above workflow). Once the dataset has been uploaded, the SRBSPut
actor will output the new remote file path as well as the status (e.g., "Success").

The suite of SRB actors also includes components designed to help manage SRB systems
and execute commands such as registered Web services. The SProxy and
SRBProxyCommands actors execute a proxy command on a remote SRB system and
output the command result along with an exit status. Only a predefined set of SRB
commands can be executed via the SProxy actor: list directory, copy or move a directory
or file, remove, replicate, create or remove a directory, change permissions (to execute a
broader range of commands, use the SRBProxyCommands actor). The SProxy actor
executes the command specified by its parameters (Figure 7.14). Parameters qualified by

226

http://www.sdsc.edu/us/resources/srb/getstart.html#getting_account

Chapter 7

parenthetical comments only apply to specific commands, e.g., S1s (for list directory) or
Srm (for remove).

Edit parameters for SProxy
_:.:/ cormmand: list: directary v
output each path separately (For Sls): il
forward parent directary (Far Sem/Srmdir): il
-r (For Srm): |:|
hasTrigger: O
class: org.stb. SProxy
semanticTypedD: urrilsid:localhost:onka: 1; 1 #SREExternallnputactar
semanticTypell: urrelsidilocalhost:onka: 2: 1#DatabaseInputFunckion
sefnanticTypez2: urn:lsid:localhost:onta: 2: 1 #DatabaseutputFunction
Zommit] [Add] [Remove] [Restore Defauls] [Preferences] [Help] [Zancel

Figure 7.14: The parameters of the SProxy actor.

Sproxy actor commands include:

List directory: List the contents of a remote directory. The path to the directory
must be input as a string (e.g., /data/2007/). By default, contained file paths are
output as an array. To output each file separately, select the output each path
separately (for Sls) parameter. When this parameter is selected, one file
path will be output with each iteration.

Copy/Move: Copy or move files to a new path. The actor outputs the new file paths
and recursively copies/moves directories. The path to the original file or directory
must be input as a string (e.g.,, /data/2007/). In addition, the new path must be
specified via the newPath port. To reveal this port, right-click the SProxy actor and
select Configure Ports (Figure 7.15). Check the Show Name checkbox beside the
newPath port. The actor outputs an array of the new file paths.

|2 Configure ports for SProxy g@
Mame Input = Ou... | Multi... Type Direction Show Mame Hide Units
SREFileSystem [V] []] DEFAULT V]] [~
ath V] [] [] DEFAULT [V]] =|
newPath [v] [] DEFALLT C ¥ Y| F
ermission [v] [] [] DEFALLT T V] =
o s 1aBl S] o nCCALILT. =1 = . U
| o [ob) (ol]

Figure 7.15: To reveal the newPath port, check the Show Name box beside the port.

Remove/Remove directory: Remove files/directories. To remove directories
recursively, select the —r (for Srm) parameter. Select forward parent
directory (for Srm/Srmdir) to output an array of the removed file and

227

Chapter 7

directory paths. The path to the original file or directory must be input as a string
(e.g., /data/2007/).

Create directory: Create a new directory. The name of the new directory must be
input as a string (e.g., /data/2007/). The actor outputs the new directory path.

Replicate: Replicate a file/directory to a new resource. Replication is the process of
making a replica, or copy, of something. Replication in SRB does not distinguish
between the original and the copy. Therefore it is possible to delete the original and
continue working with the copy (also called Migration). Replication in SRB serves a
number of purposes: disaster protection and recovery, migration to new storage
technologies, and load balancing.3? The path to the original file or directory must be
input as a string (e.g., /data/2007/). In addition, the new path must be specified via
the newPath port. To reveal this port, right-click the SProxy actor and select
Configure Ports (Figure 7.15). Check the Show Name checkbox beside the newPath
port. The actor outputs an array of the new file paths. The actor outputs the path of
the new resource.

Change mode: Change the permissions of a file or a directory. Access permissions
allowed are write (w), read (r), all (a), annotate (t), none (n), give curator (c) permission
or change owner (0).3! The path to the file or directory must be input as a string (e.g.,
/data/2007/). In addition, a new permission string (e,g., rw), user name (of the user being
granted permissions) and mdasDomain (of the person granting the permissions) must be
specified via ports. The mdasDomain (metadata domain) contains password information
(e.g., ~.srb/.MdasAuth). To reveal the relevant actor port, right-click the SProxy actor and
select Configure Ports (Figure 7.15).

The workflow in Figure 7.16 uses an SProxy actor to list the contents of the kepler_dev
home directory on an SRB system. An SRBConnect actor is used to connect to this
system and output a reference to it. The SProxy actor reads the SRB reference as well as
the name of the directory to list ("/pzone/home/kepler_dev.sdsc/"), and outputs an array
of contained files and directories.

30 Nirvana website, http://www.nirvanastorage.com/index.php?module=htmlpages&func=display&pid=32
31 SRB Manual, http://www.sdsc.edu/srb/index.php/Schmod

228

http://www.nirvanastorage.com/index.php?module=htmlpages&func=display&pid=32
http://www.sdsc.edu/srb/index.php/Schmod

Chapter 7

ll
o]

SOF Director
() K sibProxyTest Status
Flo Tooks Help

l:w:ce:z

SRBConnect

SRIFleSysem SREBFileSysen Status
o

les

ConstOnca Directory Listing
} {"panohomekepler_devsdsc) .

Arrary To Sequen

K
Fle Tools Help

/pzone/home/kepler dev.sdsc/email.txt
/pzone/home/kepler de
/pzone/home/kepler de
/pzone/home/keplar de
/paone/homwe/kep ler_de
/pzone/homwe/Kepler & sdac/arbbewo
/pzone/home/kepler_dev.sdac/papers
/pzone/homwe/Xepler_dev.sdac/srblemoTest

=dsc/emailCopyl.txe
sdsc/rest. txe

sdsc/vest
sdsc/my3RBJargonTestDir

Figure 7.16: Using SProxy actor to pass a command to an SRB system.

The SRBProxyCommands works much like the SProxy actor, only it can be used to
execute any command that is available on the server side. The actor requires an SRB
connection reference, a command to execute, and command arguments. Multiple
arguments should be separated by a space. In addition, the name of an output file can also
be specified via either an input port or the actor's parameters.

For more information and examples of Kepler and SRB, please see the Kepler/SRB
user documentation, https://code.kepler-project.org/code /kepler-
docs/trunk/legacy-documents/user/KeplerSRBUserManual.pdf.

7.1.5 Integrated Rule-Oriented Data System (iRODS)

iRODS™, is a data grid software system developed by the Data Intensive Cyber
Environments (DICE) group (developers of the SRB, the Storage Resource Broker),
and collaborators. The iRODS system is based on expertise gained through nearly a
decade of applying the SRB technology in support of Data Grids, Digital Libraries,
Persistent Archives, and Real-time Data Systems. iRODS management policies (sets
of assertions these communities make about their digital collections) are
characterized in iRODS Rules and state information. At the iRODS core, a Rule
Engine interprets the Rules to decide how the system is to respond to various
requests and conditions. iRODS is open source under a BSD license. For more

229

https://code.kepler-project.org/code/kepler-docs/trunk/legacy-documents/user/KeplerSRBUserManual.pdf
https://code.kepler-project.org/code/kepler-docs/trunk/legacy-documents/user/KeplerSRBUserManual.pdf
http://diceresearch.org/
https://www.irods.org/index.php/SRB

Chapter 7

information about iRODS and its integration with Kepler, see
https://www.irods.org/ and https://www.irods.org/index.php/Kepler.

The DataGridFileTransfer actor has functionality similar to the SRB/IRODS
commands, namely Sget, Sput, iget, and iput. DataGridFileTransfer allows users to
copy one or more objects from one local/remote file system to another local/remote
file system. The following actor expects as input a reference to local or remote file
systems support by the Jargon API32. This reference connection is created from the
source and destination URL values. Currently available file system URLs are,
file:///myDir/myfile.txt,

irods://username:password@myhost.org:1247 /myDir/myfile.txt,
srb://username.domain:password@myhost.org:5544/myDir/myfile.txt, or ftp and
http urls.

The workflow in Figure 7.17 uses an DataGridFileTransfer actor to transfer a local
file to a directory at one iRODS server. The SProxy actor reads the file from
sourceURL and transfer it to destinationDirectoryURL. Its outputs is an array of
transferred files, and exitCode.

SDF Director

String Constant2
:} file:///tm p/README..txt

DataGridTransfer
il

destinationDirectoryURL,

String Constant
l# irods:/ftestuser:,TESTUSER@srbbrick11.sdsc.edu:11247ftempZ...

Figure 7.17: Using a DataGridFileTransfer actor to transfer files between different file system.

7.2 Remote Service Execution

Kepler has several actors that can invoke different types of services for use in
workflows—from Web Services, to REST services, to Soaplab services. In this
section, we will look at a few examples of various remote services and how they are
invoked from a workflow.

32 https://www.irods.org/index.php/Jargon

230

https://www.irods.org/
https://www.irods.org/index.php/Kepler
https://www.irods.org/index.php/Jargon

Chapter 7

7.2.1 Using Web Services

The WebService actor executes a Web service-- a computer program that runs on a
remote host and communicates using a standardized protocol. The actor invokes the Web
service and broadcasts the response through its output ports.

Each Web service is described by a Web Service Description Language (WSDL) file.
WSDL is a format for describing network services--from simple eBay watcher
services to complex distributed applications. The WSDL file defines the methods
that the service can execute, as well as the type of data the service requires as input.
Public WSDL files are typically available on the Web site of the organization that
publishes the service. Check the WSDL description (you can open the WSDL URL in a
browser to view it) to see if the service uses complex types (you can recognize
complex types by the <complexType name=xx> tag used to declare them in the WSDL file). If
the service uses complex types, you must use Kepler's WSWithComplexTypes actor;
otherwise, use the WebService actor.

The WebService actor accepts the URL of a WSDL file and the name of an operation
defined by that file (such as "getXMLEntry"). Available operations will automatically
populate a drop-down menu for methodName parameter once the URL of a WSDL
file has been specified and committed in the wsdlUrl parameter and the
parameters. (Figure 7.18).

Edit parameters for Web Service Actor 1
? wsdirl: ;
<O : htep: /i xmd rig. a¢. o/ wsdl/DDE). wsdl
methodName: | 7]
userName: countBasePair
password: et MLENryY
ti l: getAllFeatures
: getRelatedFeatures
hasTrigger: boetFFEntry
class: igetRelatedFeaturesSeq
semanticType00: igetFeaturelnfo
semanticTypell: urn:lsid:locathost:onto: 2:1#WebService
[Commit] [Add] [Remove I [Restore Defadts] [Preferences] [Healp l [Cancel]

Figure 7.18: The parameters of the Web Service actor. Method names will automatically populate the drop-
down menu once a wsd1Ur1 has been committed.

Once the user has selected and committed a WSDL and operation, the actor
automatically configures itself to perform that operation by creating the necessary
input and output ports.

The Web Services and Data Transformation workflow (found in the demos/getting-

started directory) uses the WebService actor to access a genomics database and
return a genetic sequence from it, which is queried using a remote genomics data

231

http://www.w3.org/TR/wsdl

Chapter 7

service. The name of the returned genetic sequence (i.e., the gene accession
number) is passed to the WebService actor by a StringConstant actor named "Gene
Accession Number" (Figure 7.19).

SDF Director

Gene Accession Number
XML Entry Display

Sequence Getter Using XPath Sequence Display

Sequence

Errors Sink HTML Generator Using XSLT HTML Display

XML Input HTML Out

Figure 7.19: Using the Web Service actor to access a service and return a genetic sequence.

The Web Service actor outputs the gene sequence obtained from the remote server
so that it can be displayed in multiple formats using three different textual Display
actors: one for XML (the format in which the results are returned by default), one
for a sequence of elements extracted from the XML, and one for an HTML document
that can be displayed on a website. A Relation is used to “branch” the data output by
the Web Service actor so that it can be shared by all of the necessary components.

The workflow uses two composite actors: Sequence Getter Using XPath and HTML
Generator Using XSLT to process the returned XML data and convert it into a
sequence of elements and an HTML file, respectively. These actors have been
created for use with this workflow using existing Kepler actors. Sequence Getter
Using XPath and HTML Generator Using XSLT do not appear in the Components tab.
To see the “insides” of the composite actors, right-click the actor icon on the
Workflow canvas and select Open Actor from the menu.

The resulting workflow and output are shown below (Figure 7.20).

232

Chapter 7

K/.06-UsingWebServicesAndD... E]@

Fle Tools Help

SOEBiector Using Web Services and D

<qualifiers nama=\"c:lone_lib\">sr“h

<qualifiers name=\"note\">0rgan: KI.06-UsingWebServicesAndD... Q@
[C/2oucce> File Tools Help
/FEATURES> = = _—
Gene Accession Number {<SEQUENCE>cacctggagaaacttetgcactggeac s |
[> AAD45112 XML Entry Display BASE_COUNT A=\" 47 \" =\
<$EQUENCE>cacctygagaaacttctycactygeact
/DDBIXUL> L
v
<[>

Sequence Getter Using XPath Sequence Display | P

XML Entry of Gene Sequenc, S 2

K 3 . &2
HTML Generator Using XSLT . Display [KI.06-UsingWebServicesAndD. .. Q@
File Tools Help

HTML Output =
htul><head><title>X5LT Sample</titleds
<form method=\"post\" action=\"http:

Program: <input
[KI.06-UsingWebServicesAndD... E]@ Database: <inpl
File Tools Help Query: <input v
‘ <INPUT TYPE=\"submit}"
/form>
/body></htul>

0 ERRORS.

ol | >

Figure 7.20: The Web Services workflow and its output.

The WSWithComplexTypes actor is similar to the WebServices actor, only it has
several additional parameters: inputMechanism and outputMechanism, and,
as we mentioned earlier, this actor should be used when the WSDL definition
contains complex types. The WSWithComplexTypes actor automatically specializes
its ports to reflect the input and output parameters of the Web service operation.
For simple Web service types, e.g., string, int, double, etc., the ports are set to the
matching Kepler types. For complex Web service types, the ports are set to
XMLTOKEN. When the actor fires, it reads each input port, invokes the Web service
operation with the input data, and outputs the response to the output ports.

The workflow in Figure 7.21 uses the WSWithComplexTypes actor to return an array
of organisms that are supported by ProThesaurus ("Protein Thesaurus", which
implements a Biological Name and Mark-up Service for protein names and
identifiers33) Web service.

33 http://services.bio.ifi.Imu.de:1046/prothesaurus/

233

http://services.bio.ifi.lmu.de:1046/prothesaurus/

Chapter 7

K K NewWebServiceArrayReturnTest Display =-JI8 m
File Edit View Workflow Tools Window Help File Tools Help
@aQEapilli@mpc> e |("Human”, "Mouse”, "Rat”, "Yeast")
|
{ Components . Data Outline)
SOF Director
Search Components
Q (search)
(Advanc..) (sources) WSWithComplexTypes Display
All Ontologies and Folders T]
» [Components This workflow lists the supported organisms at the ProThesaurus web service
> j Projects (It tests the array return of the new web service actor)
» [statistics
» L Aqors-2_0 Edit parameters for WSWithComplexTypes X
> Directors-2_0
> Opendap-2_0 2) ey
. <55 ./ wsdl: http:f/services bio.ifi.lmu. de: 1046 /prothesaurus/services/BiologicalNameService ?wsdl
- method: listOrganisms v
inputMechanism: simple v
outputMechanism: simple v
outputhil: A
username:
password:
timeout: 600000
generatedctors: false
regeneratePorts: false
firingsPerIteration; 1
<
execution finished. [commt || Add || Remove | |Restors Defauls| | Preferences | | Help [[cancel

Figure 7.'2'1::UﬁsﬁihrriémtnﬁéﬂW§WithComplexTypes actor to return supported organisms at the ProThesaurus
Web service.

The URL of the WSDL defining the service is specified in the actor's wsdl
parameter, and a method is selected (in this case, 1istOrganisms) from the drop-
down menu that is populated when the Web service WSDL is committed. In
addition, the inputMechanism and outputMechanism parameters are set to
simple, the default. When these parameters are set to simple, the actor will
behave as previously described, setting simple-types to their Kepler type equivalent,
and complex-types to XMLTOKEN in the workflow.

Set the inputMechanism and outputMechanism parameters to composite to
automatically create a composite actor that contains the XMLAssembler or
XMLDisassembler actors needed to build any required complex Web service type
(Figure 7.22). The WSWithComplexTypes >parameters actor in Figure 7.18 was
automatically created and connected to the WSWithComplexTypes actor; this
composite actor will accept and combine all the simple input types (e.g., strings
representing the method, organism, etc) into the XML format required by the Web
service. Changing the inputMechanism parameter back to simple deletes the
connected composite actors. (If you have made changes to the composite actors and
don't want them lost, disconnect them from WSWithComplexTypes before changing
the mechanism to simple).

234

Chapter 7

SOF Direcior

method

WSWithComplexTypes
organsm

WSW-mComRig_gwes *quepeentry

expires

pammelers > gueueenty

jobid
String Constant3

[> comment

Swving Constant2
I ASTPGHTIYEAVCLHNDRTTIP

. WSWImComplexTypes >parameters

Figure 7.22: Set the inputMechanism and outputMechanism parameters to composite to
automatically create a composite actor that contains the XMLAssembler or XMLDisassembler actors needed
to build any required complex Web service type.

7.2.2 Using REST Services

A RESTful web service (also called a RESTful web API) is a simple web service
implemented using HTTP and the principles of REST34 The RESTService actor
executes a REST service. The actor invokes the REST service and broadcasts the
response through its output port.

The workflow in Figure 7.23 calls a REST service at the Amazon web site, and the
configuration information of the actor is shown in Figure 7.24. To The actor will the
REST service: http://developer.amazonwebservices.com/connect/entry.jspa. To
invoke the service, users should know from service provider that: 1) service Url; 2)
it accept ‘Get’ or ‘Post’ invocation, and 3) the parameters for the service (externallD
and ref are two parameters in the example). Since the service offers ‘Get’ method, so
the methodType parameters in the Figure 7.23 is set as ‘Get’. The workflow passes
two parameters name/value pairs and they are separated by ‘,’ (without quotes)

3 Wikipedia, http://en.wikipedia.org/wiki/Representational _State Transfer#RESTful_web_services

235

http://en.wikipedia.org/wiki/Web_api
http://developer.amazonwebservices.com/connect/entry.jspa
http://en.wikipedia.org/wiki/Representational_State_Transfer#RESTful_web_services

Chapter 7

delimiter that is also defined as a parameter in the dialog box. Its value could be
changed to something else especially when user has a parameter value that contains
‘’ (without quotes).

SDEF Director

String Constant
[# externallD=14234, ref = featured

Figure 7.23: Using RESTService actor to call a REST service in Amazon web site.

__.:/ serviceSiteJRL: http:/fdeveloper,.amazonwebservices, com/connectfentry. jspa
methodType: Get v
Provide delimiter: s
class: org.kepler.actor.rest. RESTService
semanticType0d: urnilsid:localhost: onta: 2; 1 #webService
derivedFrom: rudll
Commit] [Add] l Remaove] ’Restore DeFauItsl [Preferences] l Help l ’ Cancel

Figure 7.24: The parameters of the RESTService actor.

7.2.2 Using Soaplab Services

Soaplab is a set of Web Services providing programmatic access to command-line
tools available on remote computers. Because such tools usually analyze data,
Soaplab is often referred to as an Analysis (Web) Service. Soaplab services are
defined by an API that is the same for all analysis tools, regardless of the operating
system where they run, the manner in which they consume and produce data (e.g.,
from/to files or from/to standard streams), and the precise syntax of the underlying
command line tools.3>

3 Senger, Martin, Peter Rice, and Tom Qinn. Soaplab —a unified Sesame door to analysis tools. Proc UK e-
Science programme All Hands Conference, 2003 - nesc.ac.uk

236

Chapter 7

Kepler's Soaplab actors can access any derived Web service that is described by
Web Service Description Language (WSDL) and is registered with the European
Bioinformatics Institute (EBI). For a complete list of EBI-registered WSDLs, see
http://www.ebi.ac.uk/soaplab/services .

The workflow in Figure 7.25 uses a Soaplab service called segret to return a protein
sequence from the EMBL Nucleotide Sequence Database, a nucleotide sequence
resource.

SDF Director

SoaplabSenviceStarter: segret

SoaplabAnalysis: Run

SoaplabAnalysis: Wait for results

Sequence USA

[> embl:X13776

SoaplabChooseResultType: get sequence

Display

Figure 7.25: Using Soaplab actors to lookup a protein sequence from the EMBL Nucleotide Sequence
Database.

A StringConstant actor (called "Sequence USA") is used to pass the input—in this
example, a Uniform Sequence Address (USA)--to the Soaplab service. USAs are a
very flexible way of specifying one or more sequences from a variety of sources
(files, databases, etc). The format used in the workflow consists of a database name
followed by an accession number, which is a unique identifier given to a biological
polymer sequence (DNA, protein) when it is submitted to a sequence database3¢. For

3 Wikipedia, http://en.wikipedia.org/wiki/Accession_number

237

http://www.ebi.ac.uk/soaplab/services
http://www.ebi.ac.uk/embl/index.html

Chapter 7

more information about USAs, please see
http://emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html#usa.

The SoaplabChooseOperation actor receives the USA and "prepares” the input for the
Soaplab service. The actor requires the WSDL of the Soaplab service, which is
specified via parameters (Figure 7.26)

Edit parameters for SoaplabChooseQperation

9

‘~'.'r'/ wsdlUrl: hikbps e, ebi, ac,ukfsoaplab/services/edit, seqret, derived fwsdl
inputSetiMethods:
class: org.sdm, spa. SoaplabChooseCperation
semanticType0: urn:lsid:localhost:onka: 1:1#WehServicedckar
semanticTypell: urn:lsid:localhost:onka: 2: 1 #WehService

Carmnmit] [Add l [Remove l [Restore Defaults] l Preferences] l Help] [Cancel

Figure 7.26: The parameters of the SoaplabChooseOperation actor.

Once a wsdlUrl has been specified and the setting has been committed, the
SoaplabChooseOperation actor will automatically populate the inputSetMethods
parameter with a drop-down menu of available "set methods", which are used to identify
the input (Figure 7.27) so that the Soaplab service can recognize and use it.

G o

Edit parameters for SoaplabChooseOperation
\?/ wsdlUrl: http:/ fwww, ebi.ac.uk{soaplab/services/edit.seqret. derived?wsdl
inputSetMethods: | Tl |
class: set_feature ~
semanticType00: set_firstonly
semanticTypell: set_osfor}rnat
set_sbeqin
set_send
[Cornmit] [Add] [Remofset_sequence_direct_data
set_sequence_usa
set_sformat o

Figure 7.27: A drop-down menu of input "set methods" that is automatically generated by the
SoaplabChooseOperation actor after a WSDL URL has been specified and committed.

The example workflow uses the set sequence usa set method to specify that
the input is a USA. If the input were a fasta formatted sequence instead (an actual
protein sequence described in a text-based format), use the
set sequence direct data menu item; other set methods describe additional
types of input that the service accepts: an output sequence format
(set osformat) or the last position to use in the sequence (set send), for
example. For more information about the types of input that can be set and passed
to the segret service, see:

http://emboss.sourceforge.net/apps/release/4.1 /emboss/apps/seqgret.html

238

http://emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html#usa
http://emboss.sourceforge.net/apps/release/4.1/emboss/apps/seqret.html

Chapter 7

The WSDL of the Soaplab service must also be specified in the parameters of the
SoaplabServiceStarter actor, which starts the Soaplab service. The actor starts the
service by creating an empty job used to execute the process before the workflow is
even run.

The two SoaplabAnalysis actors perform standard Soaplab operations: run and
waitFor. Non-standard operations can be specified and performed as well,
provided they are defined in the service's WSDL file. See the documentation for
individual Soaplab services for more information about defined operations.

The SoaplabChooseResultType actor "grabs" the desired service output using "get
methods". The actor generates a list of relevant methods once the WSDL of the
service has been specified and committed (Figure 7.28). In this case, the
get outseq method is used to return the protein sequence. By default, sequences
are returned in fasta format.

Edit parameters for SoaplabChooseResultType: get sequence
2 diLUi: i f i f
‘~'.'r"‘ waaliLlrl: hikbps s, ebi, ac,ulfsoaplab/services/edit, seqret, derived fwsdl
outpukGetMethods: get_outseq W
class: orqg.sdm.spa. SoaplabChooseResulkType
semanticTypeOd: urn:lsid:localhostonko: 1: 1#WebServiceActor
semanticTypell: urn:lsid:localhostionto: 2: 14 WebService
firirgsPerIberation: 1
I Carmnmit] [Add l [Remove l [Restore Defaults] [Preferences] [Help] [Cancel l

Figure 7.28: Parameters of the SoaplabChooseResultType actor. outputGetMethods are used to "grab" the
desired results output by the service.

If the service executes successfully, the retrieved sequence is displayed by the
Display actor (Figure 7.29).

K| .soaplabmodel_segret.Display E]@

File Tools Help

get_outseq:

FX137762 13776 Pseudomonas asruginosa awiC and awiR gene for aliphatic awidase regulation
ggtaccgotggocgagoatetgotegatcacoaccayoc yygogac gogaac tgoacgat
ctacctyggogagectygagoacgagqogygttogottogtacgyoge tgagogacageac

agyagaggasacyyat Jygatcgoaccagyago oot gatogyootyorgt Lot ooy
aasaccyyogtoaccgrogatatogagogotegracyegtatgysdoattyctogogyt oy
agoaactgaacogogagoggocgyegtogyegytogooogatcgaaacgotgtocoocaggacs
coggogyCaceogyacogotatogoo gty gocgaggac ttoat togoasc Sogo oo
tacgyttoctogtgyyo o tac ety ogoacac goyoaagyo gyt gatyocgytggt oy
agogoyeocyacyegotyototgotaccogacoooctactadyyo Lo gagtat togocga v

Figure 7.29: The protein sequence output by the Soaplab workflow.

7.2.3 Using Opal Services

239

Chapter 7

Opal37 is a toolkit for wrapping scientific applications as Web services, providing
features such as scheduling, standards-based Grid security and data management in
an easy-to-use and configurable manner. Opal toolkit is provided by National
Biomedical Computation Resource, University of California, San Diego.

Kepler's Opal Client actors can access any Web services that are generated by Opal
toolkit. For the list of Web services deployed at opal project, see
http://ws.nbcr.net/opal2 /services.

s
Edit parameters for MEME . |
.

servicelIRL: http:/fws.nbcr.netfopal 2/services /MEME_4.1.0
numberOfExtralnputFiles: 0

dass: edu.sdsc.nber.opal. OpalClient
semanticType00: urn:lsid:localhost:onto: 1: 1#WebServiceActor
semanticType11: urn:lsid:localhost:onto: 2: 1#WebService
dataSet: At.fa
nmotifs: 3

mir; [

maxw: 50

mod:

minsites:

maxsites:

text:

revcomp:

Remove] ’Restore Defaults] ’ Preferences] ’ Help] ’ Cancel]

igure 7.30: An Opal Client actor where other parameters are dependent on serviceURL parameter
value.

An Opal Client actor is shown at Figure 7.30, which has service URL and other
parameters to run the service. Other parameters are dependent on serviceURL
parameter value. So users need to firstly fill in the value of serviceURL parameter,
and then click Commit button. After this step, users can double-click the actor again
to get other parameter options.

37 http://www.nbcr.net/software/opal/

240

http://ws.nbcr.net/opal2/services
http://www.nbcr.net/software/opal/

Chapter 7

This workflow perform a MEME MAST computation using
NBCR remote computation capabilities.
Using Opal this workflow send computational intensive tasks
(MEME, MAST) to NBCR cluster (ws.nbecr.net).

PN Director
Modify Input File so that it points to you file with DNA or proteins
sequences which you believe share one or more motifs.

Opal: http://nber.net/software/opal/
MEME: hitp://meme.nbcr.net/

Luca Clementi and Sriram Krishnan, 2009, NBCR

MEME MEME Qutput Directory

Qutput file from meme Browserll

L] L SleCriliR
baselIRL + Ymeme html m,m

Figure 7.31: A sample workflow using configured Opal Client Actor, called MEME, to access MEME
Web service generated by Opal toolkit.

A sample workflow using the above configured Opal Client Actor, called MEME, to
access MEME Web service generated by Opal toolkit is demonstrated at Figure 7.31.
The file connected to the input of MEME actor, called At.fa, will be automatically
transferred to the server side and get executed. The base URL containing the
working directory of the running jobs MEME Web service is obtained from the
baseUrl output port of MEME for downstream processing.

7.3 Job Submission

Job submission is a common and efficient way to utilize distributed computing
resources, such as Cluster, Grid. Kepler has two set of actors that can submit jobs to
two typical distributed resources: Cluster and Grid. Each set has some actors which
can be used for different job operations: create, submit, status check. In this section,
we will look at a few examples of these actors and how they are combined from a
workflow to realize the whole lifecycle of job submission.

7.3.1 Cluster Job Submission

A computer cluster is a group of linked computers, working together closely so that
in many respects they form a single computer.

The Kepler component library contains several actors that can be used for different
Cluster job operations: JobCreator, JobFileFetcher, JobGetDirectory, JobGetRealJoblID,

241

Chapter 7

JobManager, JobRemover, JobStatus, JobSubmitter. The current supported job
scheduler includes Condor, Fork, LoadLeveler, NCCS, PBS, SGE, and LSF.

As shown in Figure 7.32 - 7.35, a common logic for cluster job operations include
three main steps: select job manager according to its type by the JobManager actor,
submit job to a cluster by the JobCreator and JobSubmitter actor, check cluster status
by the JobStatus actor within a loop.

PN Director
Workflow version $Revision: 14097 $ on $Date: 2008-01-23 07:09:38 -0800 (Wed, 23 Jan =

SelectJobManager SubmitSimJob WaitForSimFinish

finishedJob

Simulation machine? [user@]host : @ SimTarget: "elvis”

ssh identity file (for pwdless login) @ IdentityFile: "usr/home/pnorbert/.sshfid_rsa"
job manager name:

® JobManager: "SGE"
(e.g. PBS, Condor, LoadLeveler, SGE or Fork)

Remote directory where job script will be copied ® RemoteDir: "xgc/tutorial”
to and submitted from:

Job script: @ JobScript: "workflows/SC08-Tutorial/tutorialjob.sge"

Figure 7.32: An example workflow for cluster job operations, whose sub-workflow in

SelectJobManager, SubmitSimJob and WaitForSimFinish are shown in Figure 7.33, 7.34 and 7.35
respectively.

SDF Directol
— e JobManagerMame: $JobManager
@ Target: $5imTarmgat

ZJobManagerName :.rJ

frigger

JobManager
. N jmar

JobManager's commands' path

Figure 7.33: The content of SelectjobManager composite actor in Figure 7.32.

242

Chapter 7

® submitFile: $JobScript
® remoteWorkdir: 5RemoteDir
e logFile: $LogFile

submitFile ® logFormat: $LogFormat
[

job

remoteWorkdir

Figure 7.34: The content of SubmitSimJob composite actor in Figure 7.32.

® Sleepinterval_msec: 10000
e logFile: $LogFile

@ logFormat: $LogFormat
Sleep

Sleeplnterval_msec

Lb]
finishedJob

Nondet-Merge JobStatus
jobOut

status <2 7 false : true

Logger

Figure 7.35: The content of WaitForSimFinish composite actor in Figure 7.32.

Besides the above set of actors, another actor called GenericJobLauncher is a generic
actor that can create, submit and manage a job on a remote machine accessible
through SSH. The user may choose to wait till the job has attained a specific status in
the queue - for example until it is ‘Running’, ‘Complete’, ‘Not in Queue’ and etc. A
sample workflow is shown in Figure 7.36. If the 'Wait Until Status' parameter of
GenericJobLauncher actor is set as ‘Not in Queue’, the workflow will keep running
until the job is done at the target cluster.

243

Chapter 7

SDFEDirector

Target Machine
{# jianwu@hydro.hosted ats ucla.edu

Cmd File
{#."uMomeQ.']ianwu."test."hesl.sh

Display

Work Directory

{1; fuhome2fjianwuftest/

Display2
Job Scheduler
EESGE%

Figure 7.36: An example workflow for cluster job submission using GenericJobLauncher actor.

7.3.2 Grid Job Submission

With Grid infrastructure, users are able to locate, submit, monitor and cancel remote
jobs on Grid-based compute resources. A Grid job is an executable or command that
runs on a (typically remote) Grid resource. Currently, Kepler mainly supports job
submission to Grid resources built by Globus Toolkit38. To support job submission to
Grid resources built by other Grid toolkits, such as Campus Grid Toolkit3? and
gLite9, the corresponding actors need to be implemented.

To initiate, monitor, manage, schedule, and/or coordinate remote computations,
Globus toolkits, supports the Grid Resource Allocation and Management (GRAM)
interface. Usually two different GRAM implementations, namely Pre-WS GRAM and
WS GRAM, are provided by the different versions Globus Toolkit, e.g. GT441.

Kepler provides two sets of actors to support these two implementations
respectively. We will first introduce how to get proxy certificates, which is the
security prerequisite to invoke Globus actors. Then the two sets of actors to submit
Globus jobs using Pre-WS GRAM and WS GRAM will be introduced.

7.3.2.1 Kepler Globus Actors for Proxy Certificate

To use Globus services, end users need two X.509 certificates. The first one is user
certificate, which is issued by a certification authority (CA) and is used to identify
users. This certificate will typically be valid for a year or more and will be stored in a

38 http://www.globus.org/toolkit/

39 hitp://www.omii.ac.uk/wiki/CGT

40 hitp://glite.web.cern.ch/glite/

41 http://www.globus.org/toolkit/docs/4.0/execution/

244

http://www.globus.org/toolkit/
http://www.omii.ac.uk/wiki/CGT
http://glite.web.cern.ch/glite/
http://www.globus.org/toolkit/docs/4.0/execution/

Chapter 7

file in the individual's home directory. The second certificate is proxy-certificate,
which is to support the temporary delegation of the user’s privileges to user grid
services. Proxy certificates typically have a much shorter lifetime than end-user
certificates (usually 12 hours). Several ways are provided by Globus Toolkit, which
is listed at. http://globus.org/toolkit/docs/latest-stable/security/.

The GlobusProxy actor uses Globus certificate and key file to create a proxy
certificate.

These files are issued by a trusted Grid authority, called a Certificate Authority (CA)
and are stored on your local system (usually as "usercert.pem" and "userkey.pem").
The GlobusProxy actor references these credentials with its parameters (Figure 7.37)
and uses them to create a proxy certificate, which is used by downstream Globus
actors.

Edit parameters for Globus Proxy
2 e

\..'/ cert file: JUsersimyname;. globusfusercert.pem
key file: [Usersfmyname/.globusfusercert, pem
passphrase: “password|
class: org.niworkflow.GlobusProxy
semanticType00: urn:lsid:localhost:onto: 1: 1 #GridFunctionActor
semarticTypel1: urn:lsid:localhost:onto:2: | #GridFunction

[Comini] [Add] [Remave] [Restore Defaults] [Preferences] [Help] [Cancel]

Figure 7.37: Setting the parameters of the GlobusProxy actor.

The MyProxy actor is to create a Globus proxy certificate by ‘MyProxy user account’
or ‘MyProxy X509 Credential file’ way. For ‘MyProxy user account’ way, users need
to specify host info (URL and port) and user info (username and password). For
MyProxy Credential way, which is shown in Figure 7.38, users need to specify the file
path, is /tmp/x509up_u<uid> typically. More information about MyProxy can be
found at http://grid.ncsa.uiuc.edu/myproxy/ and
http://globus.org/toolkit/docs/latest-stable/security/myproxy/.

Edit parameters for MyPro:

Proxy Ways: Proxy X509 Certificate File

Proxy X509 Certificate File: Proxy X509 Certificate File
MyProxy User Account

] ’ Add] ’ Remaove] ’Restore Defaultsl [Preferences] ’ Help] ’ Cancel]

Figure 7.38: Setting the parameters of the MyProxy actor.

7.3.2.2 Kepler Globus Actors for Pre-WS GRAM

245

http://globus.org/toolkit/docs/latest-stable/security/
http://globus.org/toolkit/docs/latest-stable/security/myproxy/

Chapter 7

Pre-WS GRAM is the GRAM implementation first introduced in GT2. In Pre-WS
GRAM, the jobs to be submitted can be described using the Resource Specification
Language (RSL), a common interchange language to describe resources. For more
information about using and creating RSL strings, please see the Globus online
documentation, http://www.globus.org/toolkit/docs/2.4/gram/rsl specl.html, or
http://programaticus.com/anl/globus/RSL.html.

The GlobusJob actor accepts the certificate generated by the GlobusProxy actor via an
input port. To use the actor to execute a job on a remote Globus host, specify the name of
a Globus server (e.g., "griddle.sdsc.edu™) and a Resource Specification Language (RSL)
string, which defines the commands to perform. A full RSL string must be specified
(Figure 7.39).

SDF Director

Display

GlobusJob

GlobusProxy

\‘ Edit parameters for GlobusJob '\
:., / REL String: “tdexecutablambinfcatXargumentsw=jtmp/pas.Jocal)”
Globus Host: ‘griddle. sdsc. edy”
[Commit | [Add] [Remave] [Rcstorc Dcf&Rs] [Preferences I | Help] Iic.)ncd J

Figure 7.39: Using the GlobusJob actor to execute a command on a remote Globus server by Pre-WS
GRAM way.

The workflow in Figure 7.39 uses actors to connect to a Globus host named
griddle.sdsc.edu. The GlobusJob actor passes a specified RSL String
"& (executable=/bin/cat) (arguments=/tmp/pas.local)" to the server,
where it is executed. In the above example, the host is instructed to print the file pas.local
from the tmp directory. The GlobusJob actor then outputs the printed file as a string.

The same workflow functionality could be achieved without using an RSL string by
using the ParameterizedGlobusJob actor instead of the Globusjob actor. Instead of
passing an RSL string to a Globus host, the ParameterizedGlobusjob actor passes a
command (specified as an executable path) and command arguments (input via a
port). The workflow in Figure 7.40 has the same output as the workflow in Figure
7.39.

246

http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html
http://programaticus.com/anl/globus/RSL.html

Chapter 7

SDF Eurector

GlobusProxy Display
ameterized Globus Job

String Constant

"Edit parameters for Parameterized Globus Job ‘3
2 Execsalepat: foincot|
b e, sdsc.od
dass: org.sdm, spa.ParameterizedGiobus Job
samanticType00: wrn:kid:localhost onto: 1:12GridFunctionActor
semanticTypell: wrniisid:locahost :onto: 2: 1 # GridFunction
[Coenenit] [Add] [Remove j [Reszoveoe\‘a\.ts] [Pvefe«encesj r Help I r Cancel]

Figure 7.40: Using the ParameterizedGlobusJob actor.

The name of the Globus host and the remote executable (/bin/cat) is specified in the
ParameterizedGlobus]ob actor's parameters. Arguments, in this case the path to the
file to open and output (/tmp/pas.local), is passed via the actor's input port.

7.3.2.2 Kepler Globus Actors for WS GRAM

WS GRAM builds on Web services technologies and is the recommended system for
most users due to its superior scalability and its support for WS-Security
mechanisms. In WS GRAM, the jobs to be submitted can be described by the Job
Description Schema, an xml language to describe resources. For more information
about using and creating the Job Description Schema, please see the Globus online
documentation,

http://www.globus.org/toolkit/docs/4.2/4.2.1 /execution/gram4/schemas/gram j
ob description.html.

= -
Edit parameters for GlobusW5Jol et e

Job Script Content:

Globus Host:

Batch Mode:

Job Scheduler Type: Condor | PES | LSF | SGE | Fork
GLOBUS_LOCATICN Path:

AXIS ClientConfigFile Path:

Remove] ’Restore Defaults] [Preferences] [

Figure 7.41: Setting the parameters of the GlobusWSJob actor.

247

http://www.globus.org/toolkit/docs/4.2/4.2.1/execution/gram4/schemas/gram_job_description.html
http://www.globus.org/toolkit/docs/4.2/4.2.1/execution/gram4/schemas/gram_job_description.html

Chapter 7

The GlobusWSJob actor accepts the certificate generated by the MyProxy actor via an
input port. To use the actor to execute a job on a remote Globus host, specify the name of
a Globus server (e.g., "griddle.sdsc.edu™) and a Job Description string, which can be
gotten from a Job Description file or defined by GlobusJobDescriptionGenerator actor.
The parameter configuration dialogue is shown in Figure 7.41, where users can specify
whether the job will be executed in batch mode, job scheduler type of the Globus Host
(which is Fork, SGE, PBS, LSF or Condor), the GLOBUS LOCATION and AXIS
ClientConfigFile Path of the client machine.

SDF Director

Globus Host
l:% griddle.sdsc.edu *

Executable
B} /binfhostname

Standard Out File
:# Ju/home2/jianwu/stdout

Standard Error File
l:{> lulhome2/jianwu/stderr

Figure 7.42: Using the GlobusWSJob actor to execute a command on a remote Globus server by WS
GRAM way.

The workflow in Figure 7.42 uses actors to connect to a Globus host named
griddle.sdsc.edu. Using GlobusJobDescriptionGenerator actor, this workflow
defines the executable, out file and error file information for the job to be submitted. The
GlobusWSJob actor uses the defined job description and submits to the specified Globus
host, where the job is executed. The output of the GlobusWSJob actor is the job handler
of the submit job which can be used to check status or other operations.

The workflow in Figure 7.43 uses GlobusWSJobStatus actor to check the current
status of a job by its jobhandler. A typical jobhandler is like:

https://griddle.sdsc.edu:8443 /wsrf/services/ManagedExecutable]JobService?7b431
d30-62a7-11de-bf68-da862a69e457

The string description of the status, which is "UnSubmitted”, "Active", "Done",
"Failed" or "Expired", can be gotten from the ‘Job Status’ output of the
GlobusWSJobStatus actor. Using the logic similar in Figure 7.32, it is easy to construct
a workflow which submit a job and monitor its execution until it is done or get
exception by composing the above actors for Globus WS GRAM execution.

248

https://griddle.sdsc.edu:8443/wsrf/services/ManagedExecutableJobService?7b431d30-62a7-11de-bf68-da862a69e457
https://griddle.sdsc.edu:8443/wsrf/services/ManagedExecutableJobService?7b431d30-62a7-11de-bf68-da862a69e457

Chapter 7

SDF Director

GlobusWS.JobStatus

String Constant
:1:. https /igriddle sdsc.edu:8443/wsrfisenices/ManagedExecut...

Figure 7.43: Using the GlobusWSJobStatus actor to get the status of a Globus job by its job handler.

249

Chapter 8

8. Mathematical, Data Analysis, and Visualization
Packages

The Kepler library contains a number of useful actors that interface with commonly
used applications and integrate their functionality into workflows. Without ever
leaving the Workflow canvas, workflow designers can access the powerful statistical
and data processing environments of R and/or MATLAB, the image processing
features of Image], and the convenient expression language built into Kepler itself.

8.1 Expressions and the Expression Actor

The Kepler expression language provides a convenient infrastructure for specifying
algebraic expressions textually and for evaluating them. In this section, we will look
at several examples of how the expression language and the Expression actor are
used—from specifying the values of parameters to performing calculations with the
Expression actor. For a complete reference on the Expression language, please see
the Ptolemy user documentation.

Expressions can contain variables, constants--either a symbolic name such as PI or
NaN or a literal (an integer, string, float, etc)--operators (+, -, *, etc), and functions
(either built-in ones such as sin() and cos(), or user-defined functions). The
following are examples of expressions:

1 An integer

PI/2 A symbolic constant divided by a literal

sin(PI/2) A function performed on a symbolic constant divided by a
literal

{1,2,4,5,6} An array

"ImAString" A string

CWD The current working directory. CWD is a built-in string-
valued constant

Expressions are often used as the values of parameters, port parameters, string
parameters and inside the Expression actor, which evaluates a specified expression
and outputs the value.

For more information about expressions and the expression language, please see the
Ptolemy documentation.

8.1.1 The Expressions Language

250

http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf
http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf

Chapter 8

The Kepler Expression language, which provides a means of specifying and
evaluating algebraic expression textually, is identical to the Ptolemy Expression
language. The language can be used to represent constants and literals, variables,
operators, arrays, matrices, records, methods and functions, and we'll look at
examples of each in this section. The material in this section is based on the Ptolemy
documentation. For additional information, please see Chapter 3 of the Ptolemy
User Manual.

To begin experimenting with expressions, select Tools > Expression Evaluator from
the Toolbar. A command-shell styled window opens (Figure 8.1). Expressions will be
evaluated on return. To scroll back to previous commands, click the up arrow (or
Control-P). To scroll forward, click the down arrow (or Control-N).

o =y

K| Expression Evaluator E]@

Eile Tools Help

> pi
3.14159265355895
Fa

[)

Figure 8.1: The Expression Evaluator. In this example, the system returns the value of the expression pi.

8.1.1.1 Constants and Literals

The simplest expression is a constant, either a literal (a number or string) or a
symbolic name (e.g., PI). Please see Table 8.1 for a list of supported symbolic names.
Numerical constants can be integers (e.g., 1 or 73), doubles (e.g., 33.2 or 1.5), longs
(e.g., 12L), unsigned bytes (e.g., 5ub), or complex numbers (e.g., 2+3i). Anything
between double quotes is interpreted as a string ("hello” or "777"). In addition,
Kepler has several globally defined string constants, noted in Table 8.2.

251

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Chapter 8

Numbers of type int, long, or unsignedByte can be specified in decimal, octal, or
hexadecimal. Numbers with a leading “0” are octal numbers. Numbers with a
leading “0x” are hexadecimal numbers. For example, “012” and “0xA”are both equal

to the integer 10.

Symbolic Name Meaning

Eore E =2.718281828459

false False

i or j Imaginary number with value equal to the square root of
1.

Infinity Infinity. The result of dividing 1.0/0.0.

MaxDouble Maximum double (ie., 1.7976931348623E308).
Numerical values with decimal points, such as “10.0” or
“3.14159” are of type double

MaxFloat MaxFloat = 3.4028234663853E38

MaxInt Maximum integer (i.e., 2147483647)

MaxLong Maximum long (ie, 9223372036854775807L).
Numerical values without
decimal points followed by the character “1” (el) or “L”
are of type long.

MaxShort MaxShort = 32767

MaxUnsignedByte Maximum unsigned byte (i.e., 255ub). Unsigned integers
followed by “ub” or “UB” are of type unsignedByte (e.g.,
Sub)

MinDouble Minimum double (i.e., 4.9E-324). Numerical values with
decimal points, such as “10.0” or “3.14159” are of type
double.

MinFloat MinFloat = 1.4012984643248E-45

MinInt Minimum integer (i.e., -2147483648)

MinLong Minimum long (i.e, -9223372036854775808L).
Numerical values without
decimal points followed by the character “1” (el) or “L”
are of type long.

MinShort MinShort = -32768

MinUnsignedByte Minimum unsigned byte (i.e., Oub). Unsigned integers
followed by “ub” or “UB” are of type unsignedByte (e.g.,
5ub)

NaN "not a number,” e.g., the result of dividing 0.0/0.0

NegativeInfinity Negative infinity.

PI or pi Pl =3.1415926535898

Positivelnfinity Infinity. The result of dividing 1.0/0.0.

true True

Supported symbolic constants and their meaning

252

Chapter 8

To see the list of globally defined constants, open Kepler's Expression Evaluator and
type constants () at the command prompt. Kepler will return a list of defined

constants and their values (Figure 8.2)

-

K Expression Evaluator

BEx]

Eile Tools Help

> constants ()

{CLASSPATH = "xMxxXxxCLASSPATHXXXXxx"™,
i

g

A.

CWD = "Cihhwkepler2OOg0123™, E = Z,718251

[

Figure 8.2: Use the constants() function to return globally defined constants and their values.

Predefined Strings Meaning

PTII The directory in which Ptolemy Il is
installed (e.g., c:\tmp).

HOME The user home directory (e.g.,
c:\Documents and Settings\you).

CWD The current working directory (e.g.,
c:\ptll).

TMPDIR The temporary directory (e.g.,
c:\Documents and Settings\
you\Local Settings\Temp).

KEPLER

The directory in which Kepler is
installed (e.g., c:\kepler).

253

Chapter 8

Table 8.2: Predefined String Values in Kepler

8.1.1.2 Variables

Expressions can contain variables—either built-in constants such as PTII or
assignments that have been made previously. For example, the following
expression uses a variable named "x", which is multiplied by the value 2.

2*x

Kepler can only evaluate the above expression (or any expression that uses
variables for that matter) if the variable is defined. Variables must be defined at the
same level of hierarchy or above (if working with nested workflows). For example,
in Figure 8.3, the variable x is defined as 4. Kepler can evaluate the expression 2 *x
(i.e., 8) because it knows the value of x. Kepler cannot evaluate the expression 2*v,
however, as the y variable is not defined.

Expression Evaluator E][E]w

Eile Tools Help

-

|

> x=4
Fx 2WH
Fx LFY

The ID v is undefined.
>>

[)

Figure 8.3: Defining a variable. In this example, x is defined as 4. y is not defined and Kepler cannot
evaulate the expression.

Variables are often defined on the Workflow canvas or using parameters. For more
information, please see Section 8.1.3.

254

8.1.1.3 Operators

Chapter 8

The Kepler Expression language supports a number of arithmetic, relational,
bitwise, and logical Boolean operators (Table 8.3). When an operator involves two
distinct types, the expression language decides which type to use to implement the
operation. If one of the two types can be converted without loss into the other, then
it will be. For instance, int can be converted losslessly to double, so 1.0/2 will result
in 2 being first converted to 2.0, so the result will be 0.5. If the types cannot be
converted, an error message will be generated, for example:

Error evaluating expression "2.0/2L" in .Expression.evaluator Because:
divide method not supported between ptolemy.data.DoubleToken '2.0' and

ptolemy.data.LongToken

'2L' because the types are incomparable.

Operator

Meaning

Arithmetic Operators

Arithmetic operators operate on most data types, including arrays,
records, and matrices

+

The + operator is an addition operation.

The - operator is a subtraction operation.

The * operator is a multiplication operation.

SN * |1

The / operator is a division operation.

The ” operator computes “to the power of” or
exponentiation
where the exponent can only be an
unsignedByte.

int or an

%

The % operation is a modulo or remainder operation.
The result is the remainder after division. The sign of the
result is the same as that of the dividend (the left
argument). E.g, 3.0%2.0is1.0.

Relational Operators

Relational operators check the values when possible, irrespective of
type (e.g, 1 == 1.0 returns true). If you wish to check for equality
of both type and value, use the equals() method.

< The < operator is LESS THAN
<= The <+ operator is LESS THAN OR EQUAL
> The > operator is GREATER THAN

The >= operator is GREATER THAN OR EQUAL

The == operator is EQUAL

The !'= operator is NOT EQUAL

Bitwise Operators

Bitwise operators operate on type boolean, unsignedByte, int and

255

Chapter 8

long (but not fixedpoint, double or complex).

The & operator is bitwise AND.

The | operator is bitwise OR.

The # operator is bitwise XOR (exclusive or, after MATLAB)

The ~ operator is bitwise NOT

Logical Boolean
Operators

Logical Boolean operators operate on type boolean and return type
boolean.

&&

The ss operator is logical AND. The difference between
logical ¢& and logical & is that & evaluates all the operands
regardless of whether their value is now irrelevant. For
example, the expression “false ss x” will evaluate to false
irrespective of whether x is defined. On the other hand,
“false & x” will throw an exception.

The | | operator is logical OR. The difference between logical
| | and logical |is that | evaluates all the operands regardless
of whether their value is now irrelevant.

The ! operator is logical NOT

The s« operator is logical AND. The difference between logical
&& and logical & is that s evaluates all the operands
regardless of whether their value is now irrelevant. For
example, the expression “false s&s x” will evaluate to false
irrespective of whether x is defined. On the other hand,
“false & x” will throw an exception.

The | operator is logical OR. The difference between logical
| | and logical |is that | evaluates all the operands regardless
of whether their value is now irrelevant.

Boolean-valued expressions can be used to give conditional
values. The syntax for this is

boolean ? valuel : value2

If the Boolean is true, the value of the expression is valuel;
otherwise, it is value?2.

"Shift" Operators

Shift operators operate on type unsignedByte, int, and long.

<< The << operator performs an arithmetic left shift.
>z The >> operator performs an arithmetic right shift.
>>>

The >>> operator performs a logical right shift, which

256

Chapter 8

‘ does not preserve the sign. ‘

Table 8.3: Arithmetic, Relational, Bitwise, and Logical Boolean Operators in the Kepler Expression
language

8.1.1.4 Arrays

An array is an ordered list of elements. It is specified with curly brackets (e.g.,
{1,2,3}. An array can consist of elements of any type. The only constraint is that the
elements must all have the same type (see Table 8.4 for examples). If an array is
given with mixed types, the expression evaluator will attempt to losslessly convert
the elements to a common type. For example, {1, 2.3} hasvalue {1.0, 2.3}
(type double). The common type might be scalar, which is a union type (a type that
can contain multiple distinct types) e.g, (1,2.3, true) is an array with three
elements of scalar type.

Example Arrays

{1, 2, 3} An array of type int. The type is denoted {int}

{"xm,my", 2" An array of type string. The type in denoted {string}

{2*pi, 3*pi} An array where the elements are given by
expressions

{1, 23, {3, 4, 5}} An array of arrays of integers (a "nested array").

{1, 2.3, true} An array of scalar type. Scalar is a type that can
contain multiple distinct types.

Table 8.4: Examples of arrays

Each element in an array has an index, which is used to access it, and a length, which
is equal to the number of elements in the array. The first element has an index of 0,
the second 1, etc. To access the second item in the array {1.0, 2.3} (i.e., 2.3) type the
following command into the Expression Evaluator:

>> {1.0, 2.3} (1)

Arithmetic and Logical operators can also be used with arrays. See Table 8.5 for
illustrations.

Example Result

Arithmetic Operations Arithmetic operations on arrays are carried out element-
by-element. Addition, subtraction, multiplication,
division, and modulo of arrays by scalars is also
supported. Arrays of length 1 are equivalent to scalars.

257

Chapter 8

{1, 2y*{2, 2} {2, 4}

{1, 23+{2, 2} {3, 4}

{1, 2}¥-{2, 2} {-1, 0}

{1, 2172 {1, 4}

{1, 21%s{2, 2} {1, 0}

{1.0, 2.0} / 2.0 {0.5, 1.0}

1.0 / {2.0, 4.0} {0.5, 0.25}

3 *{2, 3} {6, 91}

12 / {3, 4} {4, 3}

{1.0, 2.0} / {2.0} {0.5, 1.0}

{1.0} / {2.0, 4.0} {0.5, 0.25})

{3} * {2, 3} {6, 91}

(12} / {3, 4) {4, 3}

{{r.o, 2.0}, {3.0, 1.0}} /| {{2.0, 4.0}, {1.5, 0.5}}

{0.5, 2.0} Note: A significant subtlety arises when using
nested arrays. In this division example, the left
argument is an array with two elements, and
the right argument is also an array with two
elements. The divide is thus element-wise.
However, each division is the division of an
array by a scalar.

Relational As with scalars, testing for equality using the == or !=

Operations on Arrays

operators tests the values, independent of type. For other
comparisons of arrays, use the compare() function.

{1, 2}=={2, 2} false
{1, 21!={2, 2} true
{1, 2}=={1.0, 2.0} true

Extracting Elements from an

Array

To extract elements from an array use either the
subarray() or extract() methods.

{ll 2/ 3/

4} .subarray (2, 2)

{3, 4}
The first argument is the starting index of the
subarray, and the second argument is the

258

Chapter 8

length.

{"red","green", "blue"}.extract ({ {"red", "blue"}

true, false, true}) The extract() method can take a boolean array
of the same length as the original array which
indicates which elements to extract.

{"red","green", "blue"}.extrac | {"blue", "red", "green", "green"}
t({2,0,1,1}) The extract() method can also take an
array of integers giving the indices to extract.

Table 8.5: Performing operations on arrays

8.1.1.5 Matrices

Matrices are more specialized than arrays and are intended for data intensive
computations. They are specified with square brackets, using commas to separate
row elements and semicolons to separate rows. For example., “[1, 2, 3; 4, 5, 5+1]”
gives a two by three integer matrix (2 rows and 3 columns). For more examples of
matrices, please see Table 8.6.

Matrices can contain only certain primitive types: boolean, complex, double,
fixedpoint, int, and long. Currently unsignedByte matrices are not supported. If a
matrix with mixed types is specified, then the elements will be converted to a
common type, if possible. Thus, for example, “[1.0, 1]” is equivalent to “[1.0, 1.0],”
but “[1.0, 1L]” is illegal (because there is no common type to which both elements
can be converted losslessly).

Example Matrices Notes

[1,2,3] A row vector

[1;2; 3] A column vector

[1:2:9] A MATLAB-style constructor giving an

array of odd numbers from 1 to 9. In the
syntax “[p:q:r]”, p is the first element, q
is the step between elements, and r is an
upper bound on the last element. The

value is equivalent to [1, 3, 5,7, 9].

[1:2:9; 2:2:10] A MATLAB-style constructor. In the
syntax “[p:q:r]”, p is the first element, q
is the step between elements, and r is an

upper bound on the last element.
equivalentto [1,3,5,7,9; 2,4, 6,8, 10]

Table 8.6: Examples of matrices.

259

Chapter 8

Each matrix element can be referenced by its row and column index. Index numbers
start with 0. For example, [1,2;3,4](0,0) returns the element at row and column

index 0—i.e., 1.

Arithmetic and logical operators can also be used with matrices. See Table 8.7 for
illustrations. Matrix addition and subtraction are element wise, as expected, but the
division operator is not supported (you must use the divideElements() function).
Multiplication by a matrix inverse can be accomplished using the inverse() function.

Example

Results and notes

Multiplying matrices

(1, 2; 3, 41*[2, 2; 2, 2]

[6, 6; 14, 14]

If the dimensions of the matrix don’t match, then
you will get an error message. To do element
wise multiplication, use the multipyElements()
function

[9, 0; 0, 9]

In this example, a matrix is multiplied by a scalar.

Raising a matrix by an integer

[3, 0; 0, 3173

(27, 0; 0, 27]

A matrix can be raised to an int or unsignedByte
power, which is equivalent to multiplying it by
itself some number of times.

Subtracting and adding matrices

1-13, 0; 0, 3]

In this example, a matrix is subtracted from a
scalar.

(1,2;3,51+[3,5:4,7]

(4, 7; 7, 12]

Two matrices are added elementwise. If the
dimensions of the matrices don't match, Kepler
will generate an error message.

Testing matrices for equality

[3/ 0; O/ 3]|:[3/ 0; O/ 6]

True

In this example, two matrices are checked for
inequality.

True

In this example, two matrices are checked for
equality.

True

260

Chapter 8

As with scalars, testing for equality using the ==
or != operators tests the values, independent of

type.

[1, 2].equals([1.0, 2.0]) False

Use the equals() method to perform a type
specific test.

Table 8.7: Performing operations on matrices

8.1.1.6 Records

A record token is a composite type containing named fields, where each field has a
value. The value of each field can have a distinct type. Records are delimited by curly
braces. For example, “{a=1, b="foo"}” is a record with two fields, named “a” and “b”,
with values 1 (an integer) and “foo” (a string), respectively.

Fields can be accessed using the period operator. For example:
{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:
{a=1,b=2}.a/()

The arithmetic operators +, -, *, /, and % can be applied to records. See Table 8.8 for
examples.

Example Result and notes

Adding records

{foodCost=40, hotelCost=100} + | {foodCost=60}

{foodCost=20, taxiCost=20} If the records do not have identical fields, then

the operator is applied only to the fields that
match, and the result contains only the fields that
match.

Merging records

merge ({a=1, b=2}, {a=3, c=3}) {a=1, b=2, c=3}.

Records can be joined using the

merge() function. This function takes two
arguments, both of which are record tokens. If
the two record tokens have common fields, then
the field value from the first record is used.

Finding the intersection of two
records

intersect ({a=1, c=2}, {a=3, b=4}) {a=1}
Use the intersect() function to form a record that
has only the common fields of two specified
records, with the values taken from the first
record.

Comparing records

261

Chapter 8

{a=1l, b=2}=={b=2, a=1} True

When comparing records, the order of the fields
is irrelevant.

{a=1, b=2}=={a=1, b=2} true
{a=1, b=2}!={a=1, c=2} True
{a=1, b=2}=={a=1.0, b=2.0+0.01} True

Note that two records are equal only if they have
the same field labels and the values match. As
with scalars, the values match irrespective of

type.
{a=1, b=2}.equals({a=1.0, | false
b=2.0+0.01i})
To perform type-specific equality tests, use the
equals() method
{a=1l, b=2}.equals({b=2, a=1l}) true

Table 8.8: Performing operations on records.

8.1.1.7 Methods

Each of the different types of expressions—constants, records, matrices, etc—are
represented by tokens, and these tokens have a number of associated methods. For
example, array tokens have a length() method that is used to return the number of
contained elements. A record token has a length() method as well. To see what
methods are available for each type of token, see the Ptolemy online documentation.
Most of the relevant tokens belong to a class derived from token, e.g., an integer
token is a subclass of the scalar token class, which in turn is a subclass of token.

The syntax for using methods with expressions is: (token) .methodName (args)
where methodName is the name of the method and args is a comma-separated
set of arguments. Each argument can itself be an expression. Note that the
parentheses around the token are not required, but might be useful for clarity. For
examples, please see Table 8. 9.

Example Result and notes

{1, 2, 3}.length() 3
Using the length() method with an array
token

{a=1, b=2, c=3}.length() 3
Using the length() method with a record
token

[1, 2; 3, 4; 5, 6].getRowCount () 3

262

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Chapter 8

Using the getRowCount() method with a
matrix token

(1, 2; 3, 4; 5, 6].getColumnCount () | 2

Using the getColumnCount() method
with a matrix token

(1, 2; 3, 4; 5, 6].toArray() {1,2,3,4,5, 6}
Using the toArray() method with a
matrix token

[1:1:100].toArray () The latter function can be particularly useful

for creating arrays using

MATLAB-style syntax. For example, to
obtain an array with the integers from 1 to
100, you can enter:

Table 8.9: Using methods with expression tokens

8.1.1.8 Functions

The expression language supports the definition of functions—sets of instructions
that perform a specific task and return the result. Functions are defined using the
keyword function followed by the arguments to pass to the function and their types,
followed by the function body (i.e., function (argl:Type, arg2:Type...)
function body). For example:

function (x:double) x*5.0

The above function takes a double argument (x : double), multiplies it by 5.0, and
returns a double. To apply this function to a specified argument, simply type the
function into the Expression Evaluator followed by the argument, which is specified
in parenthesis:

>> (function(x:double) x*5.0) (10.0)
50.0

Alternatively, you can assign the function to a variable, and then use the variable
name to apply the function. For example,

>> f = function (x:double) x*5.0
(function (x:double) (x*5.0))

>> £ (10)

50.0

Note: when defining a function, the type of an argument can be left unspecified, in

which case the expression language will attempt to infer it. The return type is
always inferred based on the argument type and the expression.

263

Chapter 8

Functions can be passed as arguments to certain “higher-order functions” that have
been defined. For example, the iterate() function takes three arguments, a function,
an integer representing the length of the array to generate, and an initial value to
which to apply the function. For example, to get an array of five elements whose
values are multiples of 3, you could use the following:

>> iterate (function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is
the specified initial value (0) followed by the result of applying the function once to
that initial value, then twice, then three times, etc.

Another useful higher-order function is the map () function. The map() function
takes a function and an array as arguments, and simply applies the function to each
element of the array to construct a result array:

>> map (function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

The map() function is often used in workflows that define a parameter whose value
is a function. Suppose that the parameter named “f” has the value function(x:double)
x*5.0. Then the expression “f(10.0)” will yield result 50.0, providing the parameter is
in scope.

For more information about predefined functions, including tables of supported
functions, please see the Chapter 3, Appendix A of the Ptolemy User Manual.

8.1.2 Expressions and Parameters

The value of parameters is an expression, from a simple integer to a more complex
combination of operations and constants. For example, consider the following
workflow parameter named DataDirectory:

@ DataDirectory: $CWD/lib/testdata

The value of the DataDirectory parameter is an expression "$CWD/lib/testdata".
'$CWD' returns the path to the directory in which Kepler is installed. "/lib/testdata"
is the path to the desired sub-directory. Using an expression of this type allows the
path to be evaluated properly no matter where the Kepler system is installed in the
file system.

264

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf

Chapter 8

8.1.3 Expressions and Port Parameters

A port parameter functions as both a port and a parameter that is used to configure the
operation of an actor (for more information about port parameters, see Chapter 3). Port-
parameters allow users to specify a value for a parameter (e.g., iterations=4 or
name="mouse"), and to allow that value to be "updated" via a coupled port. If a value is
received via the port component of the port parameter, that value will replace the value
specified by the parameter component. For example, the Sinewave actor, which is a
composite actor found in the standard Kepler component library, has two port parameters,
frequency and phase (Figure 8.4):

Sinewave

Ny

»

SDF Director Generate a sine wave

efrequency 440.0

ephase: 0.0

Figure 8.4: Inside the Sinewave composite actor, which uses two port parameters.
The port parameters specify the "default” values for these two items. The values

specified on the Workflow canvas are also visible in the Sinewave actor's
parameters, opened when the Sinewave actor is double-clicked (Figure 8.5).

265

Chapter 8

Edit parameters for Sinewave
P linaF .
1-(/ samplingFrequency: 3000.0]
frequency: 440.0
phase: 0.0
class: proleny, ackor, lib, Sinewawve
semanticType00: urnilsid:localhost:onko: 1:1# TrigMathOper ationdctor
semanticTypell: urn:lsid:localhast:onko: 2: 1 # TrigonometricOper] prolemy. ackar ib. Sinewave |
I Carmnmit] [Add l [Remove l [Restore Defaults] l Preferences] l Help] [Cancel l

Figure 8.5: The parameters of the Sinewave actor. frequency and phase are port parameters. The
parameter value will be overridden if the corresponding port receives a value.

The Ramp actor found inside the Sinewave composite actor references the port
parameter in its parameters (Figure 8.6):

Edit parameters for Ramp
:{‘j firimgCountLimnit: o
imik: i}
step: {Frequency*2*PLfsamplingFrequency)
I Carmnmit] [Add l [Remove l [Restore Defaults] [Preferences] [Help] [Cancel

Figure 8.6: The parameters of the Ramp actor found inside the Sinewave composite actor.

Note how the value of the Ramp actor's step parameter references the frequency
port-parameter by name: (frequency*2*PI/samplingFrequency).

8.1.4 Expressions and String Parameters

Some parameters have values that are always strings of characters. Such parameters
support a simple string substitution mechanism where the value of the string can
reference other parameters in scope by name using the syntax $name, where name
is the name of the parameter in scope.*? The simple workflow in Figure 8.7 uses the
$name syntax to reference the value of the salutation parameter.

42 ptolemy documentation: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

266

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Chapter 8

K . Display g@@

SDF Director esalutation: "hello” File Tools Help

hello

String Constant)
| T

Figure 8.7: Using the $name syntax to reference a string parameter.

8.1.5 The Expression Actor

To Expression actor can be used to evaluate an expression. The simple workflow in
Figure 8.8 is used to evaluate the expression PI/2 and display the result. The
expression (PI/2) is specified by the actor parameter in this case.

-~y

K| . Display Q@@

File Tools Help

SDF Director
1.5707963267949

Display

Expression

Figure 8.8: The Expression actor used to evaluate an expression specified in its parameters.

The Expression actor is a particularly useful when it comes to evaluating expression
that use variables passed by other actors. Consider the LotkaVolterraPredatorPrey
workflow displayed in Figure 8.9. This workflow is used to solve two coupled
differential equations that model the relationship between predator and prey
populations. Note: The workflow can be found in the
KeplerData/workflows/module/outreach-2.X.Y/demos/getting-

started/demos/getting-started/ directory, and full documentation and step-by-step

267

Chapter 8

instructions for creating and using it can be found in the Getting Started Guide. The
important thing to note are the two Expression actors used in the workflow (named
dnl/dt and dn2/dt).

Continuous Director @
36
. er 2 =
Timed Plotter »
ea: 0.1 0
»
eb: 0.1 -
2
XY Plotter ed: 0.1 e
16
"
r :
8
L .
[ELIG
Integrate n Timea Pontet .
~dn1/dt 2 o ik
f I r*nl - a*nl*n2 3
= 30
2
Integrator
L L dn2/dt . |
-d*n2 + b*nl*n2 | k
r » 10
5
0 r
0) 00 [x] 02 03 04 0s [o7 08 08 10

Figure 8.9: The LotkaVolterraPredatorPrey workflow, which uses two Expression actors to evaluate
differential equations.

By default, the Expression actor has one output and no input ports. Users can define
input ports used to pass variables to the actor. For example, the dnl/dt actor
displayed in Figure 8.10 has two user-defined input ports named n1 and n2.

dn1/dt
i I r"n1-a*ni*n2 *—

Figure 8.10: Expression actor with two user-defined ports

The port names identify the values that are passed through the channels to the
actor. The actor can then use those values when it evaluates the expression. For
example, if the token passed through n1 is an integer with a value of 5 and the token
passed through n2 has a value of 2, then the Expression actor will evaluate the
expression (r*nl-a*n1*n2) and output the result (9, which is 2*5-.1*5*2). Note that
the Expression actor can reference workflow parameters (in the LotkaVolterra
example, r and a are parameters defined on the Workflow canvas.

Expression actors can also be useful for generating a series of files or file names. The

workflow in Figure 8.11 uses an Expression actor in conjunction with a Ramp and
TextFileWriter actor to name and write three unique files to the working directory.

268

Chapter 8

SDF Director

Ramp == Display

File Names
CWD+"ffile"+cnt+" htmi”

('R: ..Display E]@

ile Tools Help

C:hkepler200708134%£file0.html
C:\keplerZ0070813%filel.html
C:\keplerzZ00708134%file2.html

Figure 8.11: Using the Expression actor (File Names) with a Ramp actor to generate unique file names.

In the example above, the Ramp actor has been set to fire three times, augmenting
its step by 1 each time (Figure 8.12). The Ramp actor will output 0,1,2 (the initial
value specified by the int parameter, and then incremented by the amount of the

step until the firing limit is met).

Edit parameters for Ramp
\:{) firimgCounkLirnit: 3
imik: a
step: 1
class: proleny, ackor, lib. Ramp
semanticTyped: urrilsid:localhost :onka: 1:1#IterativeMathOperationdckor
semanticTypell: urn:lsid:localhost;onkbo: 2: 14 Iterativedperation
semanticTypez2: urrilsid:localhost :onko: 2: 1 #WorkflowInput
firingsPerTkeration; 1
I Zormmit] [Add l [Remove l [Restore DeFauIts] [Preferences] [Help] [Zancel l

Figure 8.12: Parameters of the Ramp actor.
The count generated by the Ramp actor is input into an Expression actor named File
Names via a user-defined input port named cnt. The Expression actor evaluates
the specified expression (CWD+"/file"+cnt+".html"). CWD is a built-in string-
valued constant referring to the current working directory (in this case,

269

Chapter 8

C:\kepler20070813). "/file" and ".html" are strings, which the actor adds to the
current working directory and the count to form three unique file names:

C:\kepler20070813\file0.html
C:\kepler20070813\filel.html

C:\kepler20070813\file2.html

These file names are input to a TextFileWriter actor, which creates and saves the
files in the specified location.

8.2 Statistical Computing: Kepler and R

Kepler users with little background in computer science can create workflows that
execute statistical analyses via Kepler's suite of useful R actors. Users need not know
how to program in R in order to take advantage of its powerful analytical features;
pre-programmed Kepler components can simply be dragged into a visually
represented workflow.

Note: To implement any of the R actors, R must be installed on the computer running
the Kepler application. See Section 8.2.2 for more information about installing R.

8.2.1 What is R?

R is free software for statistical computing, data manipulation, and graphics.
Based on work originally carried out at Bell Labs, R is part of the GNU project.
R provides a wide variety of statistical (linear and nonlinear modeling,
classical statistical tests, time-series analysis, classification, clustering, ...) and
graphical techniques, and is highly extensible (Figure 8.13).43

43 R Project website, http://www.r-project.org/

270

Chapter 8

Nokched Boxplots Bagar Anderson's s Data
= }_r L LI
sl nF f i
- by # BE
2 < 5 4 A 3 11 Rl =
>4\ < Sl 8 # s # z 5 b s
ala) o, - chi ¥ AT e
: [- < N [5
l ." !# et ot ﬁl :
P) R, =k o .
. e e |~
1 3] ar [3 1 21 n J 7
. [’I \. ar
FEAY |
/ | l‘\
\ |
& | \ 'I "l
5 “ L BT “ ‘ My papach ‘.
A \
o 2
{C) R Foundation, from htfp/iwwwi.r-project.org ' . -

Figure 8.13: Examples of graphics generated with R

The RExpression actor has been created for inserting R commands and scripts into
Kepler workflows. This actor makes it easy to integrate the powerful data
manipulation and statistical functions of R into workflows. In addition, a number of
customized R actors designed to perform specific functions (creating a Bar or Box
plot, for example) are included in the Kepler library. See Section 8.2.3 for a list of

useful R actors, or the R appendix for detailed examples. A search for "RExpression”
in the Components tab will return all R-related actors.

8.2.2 Installing R

R can be freely downloaded from links on the R Project web site (http://www.r-
project.org). Follow the instructions provided for installation. In addition, the R 'bin’
directory must be added to the PATH variable on the host computer. To test if the
installation is correct, open a command/terminal window and type the command

'R'. The command should startup the R environment and alert the user that R has
been started.

8.2.3 Useful R Actors

The Kepler library contains a number of useful R actors, described in Table 8.10.

| Useful R Actors \ \

271

http://www.r-project.org/#in_browser
http://www.r-project.org/#in_browser

Chapter 8

RExpression

The RExpression actor runs an R script or function.
Input and output ports are created by the user and
correspond to R variables used in the specified R
script. The actor outputs the result of the evaluated
script.

ANOVA

The ANOVA actor uses R to perform a variance analysis
on input data. The actor outputs a graphical
representation of its calculations.

Barplot

The Barplot actor creates and saves a simple barplot
graph. The actor outputs the path to the barplot graph
and (optionally) display the graph itself.

Boxplot

The Boxplot actor creates and saves a boxplot. The
actor reads an array of values and, optionally, an array
over which the values are divided (an array of dates,
for example). The actor outputs the path to the saved
boxplot and (optionally) displays the graph.

Correlation

The Correlation actor uses R to perform parametric
and non-parametric tests of association between two
input variables (e.g., two arrays of equal length). The
actor outputs the level of association (r, rho, or tau,
depending on the analysis) between the two variables,
an estimate of the p-value (if possible), and n.

LinearModel

The LinearModel actor runs a variance or linear
regression analysis on its inputs and outputs the
result.

RandomNormal

The RandomNormal actor uses an R-script to generate
and output a set of normally (Gaussian) distributed
numbers with a mean of 0 and a standard deviation of
1. The actor outputs an array of the generated integers
as well as the file path to a graphical representation of
the distribution.

RandomUniform

The RandomUniform actor uses an R-script to generate
and output a set of uniformly distributed numbers. The
actor outputs an array of the generated integers as
well as the path to a graphical representation of the
distribution.

ReadTable

The ReadTable actor reads a text-based data file on the
local file system and outputs the data in a format that
can be used by other R actors.

Regression

The Regression actor uses R to run a variance or linear
regression analysis. The actor accepts an independent
and a dependent variable. If the independent variable
is categorical, the actor uses R to run a variance
analysis (or a t-test if the variable has only 2

272

Chapter 8

categories). If the independent variable is continuous,
a linear regression is run. The actor outputs both a
graphical and textual representation of the analysis.

RMean

The RMean actor accepts an array of values and uses R
to calculate their mean. The actor outputs both a
graphical and textual representation of the analysis.

RMedian

The RMedian actor accepts an array of values and uses
R to calculate their median. The actor outputs both a
graphical and textual representation of the analysis.

RQuantile

The RQuantile actor accepts an array of values and
uses R to produce sample quantiles. The actor outputs
both a graphical and textual representation of the
analysis.

Scatterplot

The Scatterplot actor reads an independent and a
dependent variable, which are specified as arrays of
values. The actor creates a simple scatter plot based on
the input, and outputs the path to the generated graph
file.

Summary

The Summary actor uses R to calculate a specified
summary statistic. The actor accepts a number of
factors and a variable, and outputs the specified
summary statistic (e.g., presence, mean, standard
deviation, variance, etc).

SummaryStatistics

The SummaryStatistics actor accepts an array of values
and uses R to calculate their mean, standard deviation,
and variance. The actor outputs both a graphical and
textual representation of the summary analysis.

Table 8.10: Useful R actors

For example workflows using the above R actors, please see the R Appendix.

8.2.4 Working with R Actors

Using default and user-defined ports and R-scripts, Kepler's R actors can be used to
perform a wide variety of statistical and analytical calculations. In this section, we
will take a closer look at the RExpression actor as well as several sample R
workflows that demonstrate the power and flexibility of the integrated applications.

8.2.4.1 Using the RExpression Actor

The RExpression actor runs the R script or function specified in its parameters. To
view or change this R script, double-click the actor. By default, the actor creates and
saves a simple plot of an array of values using the script displayed in Figure 8.14.

273

Chapter 8

\p Rfimcton ocagils a <- ¢(1,2,3,5)
plot {a)
R working directory: C:\Documents and Settings|Kirsten|.kepler|
Save or nok: ~no-save v
Graphics Format: png i
Graphics Output:]
Automatically dsplay graphics: O
Number of X pixels in image: 480
Number of Y pixels in image: 480
class: org.ecoinformatics.seek,R. RExpression
semanticType000: urn:isid:localhost:onto: 1:1#MathOperationActar
semarticTypelll: urn:isid:localhost:onto: 2:1#GeneralPurpose
firingsPerlteration: 1
| Commk || add || Remove | [RestoreDefaults | | Preferences || Hep || Cancel |

Figure 8.14: The default parameters of the RExpression actor.

274

Chapter 8

The RExpression actor outputs a graphical representation of its result as well a copy of
the text output that R generates. The text output consists of the actor's communications
with R to run the R function or script and the values and statistical outputs. Figure 8.15
displays a very simple R workflow that shows the text and graphical display of an
RExpression actor with its default settings.

SDF Director

ImageJ

o 1
K Display (=1 %
Fle Took Help
> setwd('C:/Docunents and Settings/Kir(®
> png(filename = ‘'Kirsten7.png',width
> a <-¢(1,2,3,9)

RExpression

Display

> plot(a)
>
, _l
|1 Kirsten7 png. :J
(A50x400 porels, 0-DIt, 225K
v
< | >
W — °
< -
o o - o
o8 =
T T T T T T T
10 15 20 25 30 35 40
Index

Figure 8.15: The default settings of the RExpression actor. The actor creates a simple plot of the values
(1,2,3,5).

The first two lines in the text display window in the upper right corner of Figure
8.15 (‘setwd..” and ‘png..") are setup commands for R that are automatically added
by the actor. The last two lines of the display are exactly what would appear if one
were running the R system from the command line:

> a <-c¢(1,2,3,5)
> plot(a)

275

Chapter 8

Additional ports can be added the RExpression actor to provide inputs or outputs.
The names of the additional input ports become named R objects used in the R
script. For example, the RExpression actor in Figure 8.16 has two user-defined input
ports named aaa and bbb (for information about adding and customizing ports,
see Section 3.2.4.1). Two Expression actors are used to pass arrays to these new
ports, where an R script can reference the values by the port name. The R script has
been set to aaa+bbb, where aaa is {1,2,3} and bbb is {4,5,6} (i.e., the values
passed through the correspondingly named ports).

I K Display ,_-__:[_DJ
SDF Director ‘Ek Todks e
setwd('C:/Docunents and Settings/Kirl®
png({filename = ‘Kirstenll.png', width
asa <- ¢(1, 2, 3)
Expression bbb <- c{4, 5, 6)

RExpression

>

>

>

1>

||> asa+bbb
[1] S 7 9

>
>

Display 3
Expression2

<] >

Figure 8.16: Two user-defined ports have been added to an RExpression actor.

The Display window contains the workflow output and the text generated by R: aaa
= 123; bbb = 4,5,6; and aaa+bbb = 5,7, 9 (i.e.,, 1+4, 2+5, 3+6). If aaa and bbb were
simple scalar values (e.g., 1 or 17.5), then this RExpression actor would have simply
duplicated the functionality of the Expression actor. However, the base data type of
the R system is the vector (similar to the Kepler array). Thus the result consists of
the corresponding input array elements added together.

Figure 8.17 shows a variation of the previous workflow. The R-script has been
modified to instruct the RExpression actor to plot the sum of the inputs instead of
outputting them as text:

ccc <- aaa t+ bbb
barplot (ccc)

276

Chapter 8

SDF Director

Expression

Wi K/ Display :j@
Fie Took Help
> setwd('C:/Documents and Settings/Kir®
> png(filename = ‘'KirstenS8.png',width
> aaa <- ¢{1, 2, 3)
> bbb <~ c(4, S, 6)
> ccce <- aaa + bbb
> harplot (ccc)
>
>
v
< | >

Figure 8.17: An example of an RExpression workflow used to create a plot of the output.

In the above workflow, the graphical output is saved as a .png file (the default). The
RExpression actor can also generate and save a .pdf file—set the desired output type with
the GraphicsFormat parameter. The dimensions of the graphic can be customized
with the NumberOfXPixelsInImage and NumberOfYPixelsInImage
parameters. By default, the graphic is 480x480 pixels. Note that generated graphics files
are saved to the R working directory, which by default is the Kepler cache (e.g.,
C:\Documents and Settings\<UserName>\.kepler\).

For more information about working with R in Kepler, please see the R Appendix of the
User Manual.

8.2.4.2 Using EML Datasets with the RExpression Actor

EML datasets can be accessed and used in a variety of ways that are useful to R
analyses. In the following section, we'll look at how the RExpression actor can
perform custom statistical analyses--over two data variables, several variables, or

277

Chapter 8

the entire Datos Meteorologicos dataset (which consists of EML-described
meteorological data collected from the La Hechicera station in 2001) using R-scripts
and appropriate input data formats: arrays, records, or data tables, respectively. For
more information about EML, please see Chapter 6.

Using Arrays with the RExpression Actor

The data array, or vector in R, is commonly used as the data format for information
processed by the RExpression actor. The workflow in Figure 8.18 shows an example
of a workflow used to process two data variables (the RExpression actor is used to
perform a simple linear regression analysis) that are passed to the RExpression actor
as arrays. This workflow is included in the demos/getting-started directory
(O5LinearRegression.xml), and step-by-step instructions for creating it can be found
in the Getting Started Guide.

SOF Director
ImageJ

DatosppMeteorologicos
3

R_linear_regression

(;‘ 1152049686328, pe M=% |
|[4BGxAB0 pixels; 8-bit, 225K]

0
w
@
I — ——
"] ——
< K .05-LinearRes ton Displ =J\B
. inearRegression Display o= X
File Tocks Help
o o~
(44 g D setwd('C: /Documents and Settings/Kirsten') o
(‘f) & Jpegifilenane = '1152049686328.)pg',vidth = 480, height = 480, pointsize =
D T_AIR <- c(15.0, 13.4, 13.4, 12.4, 11.7, 11.4, 11.5, 11.5, 12.2, 17.4, 20.1

952

D BARD <- ¢(953.4, 953.8, 954.0, 954.3, 954.5, 954.7, 954.8, 954.8, 954.9, 95
P rea <~ 1n(BARD - T_AIR)
> res

951

[Call:
ln{formula = BARO ~ T_AIR)

950

T T T iloefficients:
10 15 20 55 || (Intercepr) T_AIR
5 B - $58.3772 -0.3244

> pLot(T_AIR, BARD)
> abline(res)

Figure 8.18: Linear Regression workflow and its output.

The left-hand window in Figure 8.18 displays the scatter plot of Barometric pressure
to Air Temperature along with a regression line. The graph shows a strong negative

278

Chapter 8

relationship between the two: as air temperature lowers, the Barometric pressure
rises. The right-hand window displays the Barometric Pressure and Air
Temperature data used in the scatter plot. Additionally, the intercept on the Y-axis
(958.38 Barometric Pressure and the slope - 0.32 for the linear regression equation
y=mx+b) is displayed.

The data set used by the workflow in is
described by EML metadata, and so the
EMLZ2Data set actor is used to access the
data. To locate the desired ports (for > T_AIR, bvpe:doubls |
barometric pressure and air

temperature, in this case), mouse over

the data actor's ports to reveal an

identifying tooltip.

Datos WMeteorologicos

The Datos Meteorologicos actor is configured to output the barometric pressure and
air temperature data as arrays. To set this output type, select “As Column Vector”
from the pull-down menu beside the Datos Meteorologicos actor's Data Output
Format parameter (Figure 8.19) and click Commit.

Edit parameters for Datos Meteorologicos
9 ey

2 e
Data File:
Selected Entity: Datos Meteorologicos bl
Draka Oubput Format: A5 Column Yectar| v
File Extension Filter: s Field
Allaw lenient data parsing: s Table

A5 Fow

Check For latesk version:
s Byke Atray

As Unicompressed File Mame
endpoint: As Cache File Mame

As Column Vector

Az ColumnBased Record

recordid:

Namespace:;

Zommit] [Add] [Remove] [Restore DeFauIts] [Preferences] [Help] [Zancel

Figure 8.19: Configuring Datos Meteorologicos for use with the RExpression actor.

The R-script used by the RExpression actor instructs it to read the Barometric
Pressure and Air Temperature data and then plot the values along with a regression
line.

res <- 1Im(BARO ~ T_AIR)
res

plot(T_AIR, BARO)
abline (res)

279

Chapter 8

Note that the user-defined input ports of the RExpression actor have been named
“T_AIR” and “BARO” as a convenience so that they correspond to the names of the
EMLZDataset actor ports providing the data. There is no functional requirement
that the input port names match the names of the output port to which they are
connected.

Using Record Tokens

The RExpression actor can be configured to process Kepler record tokens, which is
particularly useful when performing R-analyses over several columns of data in an
EML dataset but not the entire table. A record token is a collection of named arrays
representing the columns of a data table (e.g, {BARO = {953.4, 953.8,
954.0}, RAIN={2.4, 3.8, .01}, RH={99, 27, 99}}, where BARO,
RAIN, and RH are the column names).

The workflow in Figure 8.20 uses an RExpression actor and a record token to create
a scatter plot matrix of a subset of the Datos Meteorologicos data fields: Air
Temperature, Barometric Pressure, and RH.

SDF Director
Sequence To Array3d
Datos Mzeorc ogi goquence ToAma
I l Record Assembler
<
- =) = =53]
rf Kirsten13.pig. .‘_‘AE" [omToRacord_R Display T:J}EE
(4504 EY piceis. 5D, 225K — | | Pe Took ke
> serwd('Ci/Documents and Sezcings/Kirscen/.kepler/') 2
0 60 80 10 > png(filename = 'Kirstenll.png‘,vidth = 480, he
il R > BARO <- c(953,4, 953.0, 954.0, 954.3, 954.5, 9
L s+, 954.3, 954.5, 954.7, 954.9, 955,1, 955 \ 2.
. " o ;. > RH <~ c(99, 99, 99, 99, 99, 99, 59, 99, 99, 92, 83, 71, 74, 72, 85, 92, 99,
5 . 93, 95, 99, 95, 80, 70, €2, §B, 37, 37, 39, 95, 95, 99, 99, 99, 93, 99, 99
BARO A .I‘ " L O > T_AIR <- c(15.0, 13.4, 13.4, 12.4, 11.7, 11.4, 11.5, 11.5, 12.2, 17.4, 20.1,
- % L > df <- data.frame (BARO, K, T_AIR)
- P Q) " > paics(df)
8. ® > sunmary|dg)
LY Bl B v o BARO RE
84 ' . -t Min. 1950.2 Mim. :24.00
bl 53¢) it 12t Qu.:952.0
3 * RH > Median :953.5 Median :99.00
* g L :1953.2] :187.0
Ep I o3 ean 1953 Nean :87.08
L 3rd Qu.:954.4 3rd Qu.:99.0D
X Kax. 1955.5 Max. :199.00
a3 B 2
T g DR . 2 a
. < >
LT H T_AIR .
\ 3 :
11111
%50 852 854 10 2 el

Figure 8.20: Using the RExpression actor with a record token.

280

Chapter 8

The Datos Meteorologicos actor in Figure 8.20 has been configured to output data as
"Fields" (the default). Each field of data is sent to a SequenceToArray actor that
"limits" the number of fields to 100 via the arrayLength parameter (set to 100).
In order for the RecordAssembler actor, which reads and combines the three arrays
output by the SequenceToArray actors to produce a single record token, all of the
arrays must be the same length (though not the same data type). If the arrays are
not the same length, the input is ignored by the RecordAssembler actor. The
RecordAssembler actor must be configured with three user-defined input ports to
receive the array data.

The RExpression actor reads the record token and displays the scatter plot matrix
and summary statistics for the three variables using the following RExpression
script:

pairs (df)
summary (df)

Using Data Tables

The RExpression actor can be configured to process an entire dataset using a data
table, a format that can be output by the EML2Dataset actor instead of individual
vectors. To output a data set in table format, select "As Cache File Name" as the
Data Output Format. Note that the output ports of the data actor automatically
reconfigure themselves appropriately; the name of the data table is output via the
port named CacheLocalFileName.

The workflow in Figure 8.21 uses a data table and an RExpression actor to create a

scatter plot matrix of the entire Datos Meteorologicos dataset. The data table is also
displayed in the text display window.

281

Chapter 8

ImageJ
SDF Director (4! !;I
Datos Meteorologicos
> RExpression
Display
h Kirsten12.prg E@E[
(TGlAS pieis, S 55K n e
$ 40 ?‘.-9 0«
HEBHEEEEND ﬁ
Al S RS —— —=5
—_— ERLS - J
TER R .
AR DR o e 5.2 5 1.5 s5z.o8
WA AN K (T M% Jlos 01/04/01 20:00 14.4 99 13.9 953.3
ol A BTGB B oioaio 2000, o5 % 18 98551
% by Kl (1] ¥ 4196 01/04/01 23:00 13.5 99 12.8 953.9
;ﬂ ﬂ m E @ [[] a m 97 01/05/01 00:00 13.6 99 12.8 953.9
98 01/05/01 01:00 13.5 99 12.8 954.0
HMEHEHHEHEHEHEHREHE 9199 01/0S5/01 02:00 13.1 99 12.8 954.0
% EANEEBE =@ |[ro0 01/05/01 03:00 11.9 99 11.7 954.3(w
< | >
mwmﬂmﬂm@m
0 25 0 o S0

Figure 8.21: The RExpression actor using a data table. The data output format of the Datos Meteorologicos
actor has been set to "As cache file name".

The RExpression actor uses the following R-script to read the data table and create a
pairs graph:

datafile <- infile

df <- read.table(datafile, sep=",", header=TRUE)
pairs (df)

df

An alternative method for loading tabular data from the EML actor into the
RExpression actor is to use the “As Column Based Vector” output format for the EML
actor. When the actor is configured with this setting, a single “record” output port is
created. When the record port is connected to an RExpression input port, an R-
dataframe structure is created. This approach is advantageous because it can make
use of the built-in data selection mechanism (i.e., the Query Builder) of the EML

282

Chapter 8

actor. Additionally, it insulates the RExpression script from dealing directly with file
parsing configuration details like header lines and record delimiters. See the
Appendix B for an example of this method.

8.2.4.3 Using Excel Data (i.e., Non-EML data) with the RExpression
Actor

Although simple comma- or tab-delimited data sets (e.g., Excel files exported as text)
are less versatile than EML-described data sets, Kepler has a special R actor
designed to process with this type of source: the ReadTable actor. The ReadTable
actor reads a text-based data file on the local file system and outputs the data as a
data frame, a format that can be digested by other R actors.

To use the ReadTable actor, data must be in a 'spreadsheet-like' tabular format,
where each line of the data file contains one row of values, separated by a
'separator’ delimiter (tab, comma, space, etc). Saving an Excel spreadsheet as a text
file creates such a data file (with a tab separator).

The "mollusc_abundance.txt" dataset, found in the R module demo directory is an
example of a simple tabular data set that contains occurrence data for several
species of mollusc collected in 2000. The workflow in Figure 8.22 uses the
ReadTable actor to "translate” this data set into a data frame that is then passed to
an RExpression actor that extracts each species name from the dataset and then
calculates count averages for each of the species. The workflow outputs a plot of the
averages. The full workflow (ReadTable.xml) can be found in the R module demo
directory.

283

‘000

file:/Users/barseghian/KeplerData/workflows/module/r-2.1/demos/R/ReadTable.xml

Chapter 8

IEREERNOEE

o> (o[@]

I Components Data

Outline |+

Search Components

Q [search)

CAdvanced..) (Sources) _ Cancel

5

[All Ontologies and Folders

[3 Components
> Projects

SDF Director

Data File Name

Workflow

| propertyCr.workowdir')+ 'demos /R /mollusc_abundance.txt”

[3 Statistics Separator
» [Actors pE'\l"} RExpression
» [Dataturbine header
» [Directors
b [Opendap
[
L £ o RaadTahla Nicnlau?
0O00 RExpression-1.png |
o
8 4
g Rea
-] 3 Detracia
6 Detracia
8 Detracia
2 1 Detracia
3 Detracia
6 Detracia
o | 8 Detracia
© 1 Detracia
3 Detracia
6 Detracia
o | 8__Dateaci
=
2 o .
o ° 8
g i A :
o - _ 8 e 2
T T T T T T T
Crassostrea Detracia Hy ¥ Littoraria Melampus Polymesoda

Figure 8.22: Using the ReadTable actor to translate a local, tab-delimited data set into a data frame format,

which can be processed by other R actors.

The ReadTable actor is itself an R actor, and double-clicking the actor reveals the R-
script in the actor parameters (Figure 8.23).

284

Chapter 8

Edit parameters for ReadTable
,?/ R Function or seript: if (any(ls(] == "header"] == FALSE) header= TRUE
if (anvils() == "separator™) == FAL3IE) separator =
if (any(ls() == "nrows") == FALZE) nrows = -1
if {anyils(] == "fill"] == FALSE} fill = TRUE
df «- read.table(fileNate, sep=separator, header=h
df
dataframe <- df
pairs (df)
£ >
R warking directary: CiiDocuments and SettingsiDan Higgins', kepler',
Save or not: L-no-save w
Graphics Farmat: prig w
Graphics CQutput: F
Aukomatically display graphics: F
Murnber of ¥ pixels in image: 480
Murmber of ¥ pixels in image: 480
class: org.ecoinformatics, seek. R RExpression
semanticType0o: urn:lsid:localhost:onko; 11 #Mathoper ationactor
semanticTypell: urri:lsid:localhostonko: 2: 1 #GeneralPurpose
firingsPerTkeration: 1
Zormmit] [Add l [Remove l [Restore DeFauIts] [Preferences] [Help] [Cancel

Figure 8.23: The ReadTable actor parameters.

By default, the actor assumes that the first row of the data file contains column
names (e.g., "Date", "Occurrence”, etc). The default separator is any white space (e.g,,
spaces or tabs). Use the ReadTable actor's header and separator ports to
specify other behaviors (e.g., a comma "," as the separator, or "FALSE" to indicate
that the data set does not contain header information. Often, all input ports other
than the file name can be left unconnected. An additional output port (called
dataframe) has been added to the ReadTable actor to pass the data frame to the
downstream RExpression actor. For more information, please see the R

documentation for read.table.

8.3 Statistical Computing: MATLAB

Kepler's MATLABExpression actor runs a MATLAB function or script and outputs the
result of the evaluated script. MATLAB ("MATrix LABoratory") is a high-level
technical computing language and interactive environment for algorithm
development, data visualization, data analysis, and numeric computation.#* The
application is available through The Mathworks, http://www.mathworks.com. The
MatlabExpression actor will not run unless MATLAB is installed on the local system.

44 Mathworks website, http://www.mathworks.com/products/matlab/description1.html

285

http://cran.r-project.org/doc/manuals/R-intro.html#The-read_002etable_0028_0029-function
http://www.mathworks.com/
http://www.mathworks.com/products/matlab/description1.html

Chapter 8

Please refer to the Mathworks site for information about obtaining and installing
MATLAB.

The MATLABEXxpression actor works much like the RExpression actor: specify the
desired MATLAB expression and configure the appropriate input and output ports.
The expression may include references to the input port names, current time
(time), and a count of the firing (i teration). To refer to parameters in scope, use
$name or $ { name } within the expression.

NOTE: You must set an environment variable to the MATLAB libraries directory
before running Kepler. The following examples are for MATLAB R2007b installed in
a common location:

On Magc, in a terminal window:

export
DYLD LIBRARY PATH=/Applications/MATLAB R2007b/bin/maci
kepler.sh

On Windows, Start->Run:

cmd
set PATH=%PATHS%;c:\Program Files\MATLAB\R2007b\bin\win32
kepler.bat

On Linux, in a terminal window:

export LD LIBRARY PATH=/usr/local/matlab/bin/glnx86
kepler.sh

Once your system is configured properly, you can begin to build and run workflows
using the MatlabExpression actor. The workflow in Figure 824 uses a
MATLABExpression actor to invoke a command in MATLAB: the function "surf"
(which renders a matrix as a surface plot) on the matrix input.

286

Chapter 8

SDF Director

Ramp TrigFunction

MultiplyDivide MatlabExpression

TrigFunction2

This workflow requires that Matlab be installed on
your local machine.

Figure 8.24: Using the MATLABExpression actor. This workflow can be found under
outreach/workflows/demos/MAT Lab/MatlabExpression.xml.

The surf () function is specified in the value of the MatlabExpression actor's
expression parameter (Figure 8.25). Note that the name of the actor's input port
is "input," which is referenced in the expression value as well. The actor's other
two parameters, getlxlasScalars and getIntegerMatrices, control data
conversion. get1xlasScalars specifies that all 1x1 matrix results be converted
to scalar tokens (the default). Select the getIngegerMatrices parameter to
check all double-valued matrix results and return an IntMatrixToken if all elements
represent integers. This setting is off by default for performance reasons.

287

Chapter 8

Edit parameters for MatlabExpression

“:r’/ Expression:

surf (input)

getlxlassScalars:
getIntegerMatrices: |:|
Carmnmit] [Add l [Remove l [Restore Defaults] [Preferences] [Help] [Cancel

Figure 8.25: Parameters of the MatlabExpression actor.

To augment the search path used by the MATLAB engine to locate files, set a user-
defined parameter named packageDirectories containing a comma-separated
list of paths to be prepended to the MATLAB engine search path. Paths can be
relative to the directory in which Kepler was started, or any directory listed in the
current classpath (in that order, first match wins). After evaluation, the previous
search path is restored. Note: to add a new actor parameter, double-click the
MatlabExpression actor and click the Add button.

Adda debugging parameter to send debug statements to stdout. An integer value
of 1 will return statements from the MATLAB Engine, a value of 2 returns debug
statements from both the MATLAB Engine and the Kepler JNI, and a value of 0, or
the absence of the parameter, restores the debug behavior to the default setting

(off).

8.4 Image Manipulation: ImageJ

The Kepler library contains two actors (Image] and [JMacro) designed to interface
with Image], a public domain Java image processing program inspired by NIH Image
for the Macintosh. Image] can display, edit, analyze, process, save and print 8-bit, 16-
bit and 32-bit images (Figure 8.26). It can read many image formats including TIFF,
GIF, JPEG, BMP, DICOM, FITS and "raw". It supports "stacks", a series of images that
share a single window. It is multithreaded, so time-consuming operations such as
image file reading can be performed in parallel with other operations.*>

4 Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
http://rsb.info.nih.gov/ij/ , 1997-2007.

288

http://rsb.info.nih.gov/nih-image/
http://rsb.info.nih.gov/ij/

Chapter 8

e

File Edit Image Process Analyze Plugins Window Help

B oz~ +HN A [ael@ [|]| |ﬁ 1ol x|

Location = (144,85), value=0,66,200 102194 pixels; 8-bil

=10l x|

‘16?1 58 xel?B-bitgrayscale; i

-

-

. ; ;Lg"x
121x%118 pixels; 8-bit gref 121x118 pixels; 8-hit gre - - . o -
|Area |Mean [Major [Minor |Angle | <

425 19595 2802 1931 71.22

426 201.84 3133 1731 17.59

676 19889 3572 2410 166.25

361 197.21 2370 1939 17283
6100 18972 4620 1681 6£4.39

641 19262 3975 2053 12264

[»

Figure 8.26: ImageJ toolbar (upper left) and examples of image data. This image is from the ImageJ Web
site, http://rsb.info.nih.gov/ij/index.html

Kepler's Image] actor reads an image file name and opens and displays the image
along with the Image] toolbar containing image-processing options, which can be
used to process the image. The I[/Macro actor runs Image] macros, which are used to
display, edit, analyze, process, save, and print a wide variety of image formats. In
this section, we will look more closely at these actors and at how the Image]
application can be used to perform some useful processes such as rescaling,
clipping, and adjusting color balance. For an in-depth look into all of the capabilities
of Image], please see the Image] documentation.

8.4.1 Intro to ImageJ and the ImageJ Actor

The Image] actor is used to display and/or manipulate a wide variety of image
formats: TIFF (uncompressed), PNG, GIF, JPEG, DICOM, BMP, PGM, FITS format, or

289

http://rsb.info.nih.gov/ij/index.html

Chapter 8

Image] and NIH Image lookup tables (with ".lut" extension). Additional file formats
are supported via plugins installed in the Import submenu (File > Import...).

The simple (one actor!) workflow in Figure 8.27 demonstrates how the ImageJ actor
is used to open the Kepler logo (a PNG file specified by the Image] actor's
£i11eOrURL parameter) in a display window. The Image] toolbar opens as well, and
can be used to manipulate the image in a number of ways. The actor can also receive
the URL of an image via its input port, which is useful when displaying the
graphical output of a workflow, for example.

e Ede Wew Wokflow Took Window Heb ‘
RARADD MO RS0 e i
Cmowrls Data 4 jmem e —— . _ '_]
AR | ImageJ ' | imagel =) }
; toolbar : Fée EGf Image Process Anahze Plugins Window Help
e wmmmll| ey, EQIEIOSIRINAIHN AL (K@l | |||]
0] Searchr B Scroling fool
SOF Director —7
| '_7ﬁ
= @ SexrchReogs m ’ ’k_i:r-'tg{ A B ittt et etad ool declai
= @ Conponets “°°'$°‘°"'~'""““1 : Dlsplay wmdow.
= @ oata Outpa N B awan s e = a e
= @ Workflow Output »
= @ Graghicsl Outpnr ImageJ
= |
" !djl parameters for lmageJ \
\?/ CiiDoouments and Settings|Kr stan|Dasktoplkepler-logo. 009 @
dass: bl Imagelactor
semanticType000: wn;kad:locahost ionko: 1:1 2 imageManpulationdctor
semanticTypelll: urmn:kad:locahost iorko:2: 1 #GraphicaiOutpet
FringsPer Reration: 1
[commt || add || Remove |[RestoreDefauts| | Preferences |[b J[concel |
g e oy ——

Flgure 8.27: Opening an |mage with the ImageJ actor. Specify the path of the |mage to open in the ImageJ
parameters (shown above) or via the actor's input port.

8.4.1.1 Rescaling Images
Once an image has been opened by ImageJ, you can use the ImageJ tools and menu

options to process and save the image as desired. To rescale an image, for example, select
Scale from the drop-down Image menu in the ImageJ toolbar (Figure 8.28).

290

Chapter 8

¢ Imagel

AEX

File Edit Image Process

Bola e

Straight ling Adjust
Show Info...

SDF Director

Propetties...
ImageJ
Colar

Stacks

Crop
¢ | W =3¢

100x80 pixels; B-bit;‘I

Kepler
3&

Duplicate...
Rename...
Scale...
Rotate
Zoom

Lookup Tahles

Ctri+l
Ctrl+Shift+P

Ctrl+Shift+D

Ctrl+E

Analyze Pluging Window Help

v a2

|

|

|

]

»

»
>

»
»

»

Figure 8.28: Scaling an image using the ImageJ Scale menu item.

A dialog box allows users to select scaling
settings (Figure 8.29). Images can be scaled
by a factor (.05-25) or using specified
dimensions in the Width and Height fields.
Check Interpolate to scale using
bilinear interpolation. Select Create New
Window to open the scaled image in a new
display window. The Fill with
Background Color option applies when
the new image is opened in the original
display window.

To rescale multiple images, you may wish to
use the 1JMacro actor with an appropriate
macro. We will look at an example of using
the 1JMacro actor in Section 8.4.2.

8.4.1.2 Clipping Images

-

¢ Scale

¥ Scale (0.05-259):

Y Scale (0.05-25):

Width (pixelsy: |2

Height (pixels):

v Interpolate

Iv Fill with Background Colar

v Create Mew Window

1

160

11

Title: |kepler-logo-1.png

Qi | Cancel|

Figure 8.29: ImageJ scaling settings

291

Chapter 8

Another common way to manipulate images is to clip them, i.e., select a fragment of
the image that is of interest. To select only South America from a map of the world,
for example, use one of the seven Image] selection tools available in the toolbar
(Figure 8.30). The selection will be highlighted with a yellow border.

File Edit Image Process Analyze Pluging Window Help

%r@,maxmww, 72

¥=192, y=189, value=0,0,0

ImageJ

| ¢ saxicola_combined_MergedResult-2.jpg g@
450225 pikels, RGB; 392K '

Figure 8.30: Using an ImageJ selection tool to select a portion of a displayed image. ImageJ has a number
of selection tools (highlighted with red oval).

Once a selection has been made, copy it to the system clipboard with the Copy to
System menu item (Figure 8.31). This command copies the contents of the current
image selection to the system clipboard. If there is no selection, the command copies
the entire active image.

292

Chapter 8

'. & Image) [3 \'

File Edit Image Process Anahze Plugins Window Help

SDF Director @f Undo Ctri+Z Jﬂi\JﬁAj_&ﬁi_ﬁ_J_l__‘_J_”

Freell cut Ctri+X [
Copy Ctri+C
Copy to System
ImageJ L v
Paste Ctri+y

Paste Control...

Clear

Clear Outside

Fill Ctri+F
Draw Ctri+D
Invert Cirl+Shift+l

¢ ml

450x%225 pixels, RGB, 2

Selection
Options

Figure 8.31: Copying a selection to the system clipboard using the ImageJ toolbar.

Note that the Image] toolbar has a context-sensitive status area (Figure 8.32). When
rolling over an image, for example, the x- and y-position of the cursor is displayed
along with other relevant information, such as the cell value (for asc grid files) or
the RGB color value (for jpg files, etc).

293

Chapter 8

K

File Edit Image Process Analze Pluging Window Help

B olxiool [N« [+A A [Kl@fe] |] | | ||

¥=242 y=182 value=2.0

SDF Director

K. saxicola_combined_MergedResult-2.asc Qé

4505225 pixels, RGB; 392K

ImageJ

Figure 8.32: The ImageJ status area is highlighted with a red oval. The x and y position of the cursor is
displayed along with the cell value (the displayed file is an asc grid file).

8.4.1.3 Adjusting Image Color and Brightness

To adjust the color, brightness, contrast, etc. of an image, use the options in the
Image] Image > Adjust... menu (Figure 8.33). The Brightness and Contrast dialog
window that opens when that menu item is selected contains four sliders. Minimum
and Maximum control the lower and upper limits of the display range. Brightness
increases or decreases image brightness by moving the display range. Contrast
increases or decreases contrast by varying the width of the display range. The
narrower the display range, the higher the contrast. Use the Color Balance menu
item to make adjustments to the brightness and contrast of a single color of a
standard RGB image.*¢

The Image] documentation has comprehensive information about all of the many
image adjustments (brightness, contrast, size, threshold, scale, crop, etc) that can be
made with Image]. Please see http://rsb.info.nih.gov/ij/ for more information.

46 See http://rsb.info.nih.gov/ij/

294

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/

Chapter 8

"8 lmageJ [;_] ‘}
File Edit Image Process Anatyze PlﬁlnsivandoTHelp |
Bl e > N | |
Segmented [agiyst b BrightnessiContrast.. Ctri+Shit+C | |

Show Info... Ctrl+| WindowiLevel..,

Properties... Clri+Shift+P Color Balance...

Color »| Threshold... Ctrl+Shift+T

Stacks » Size..

Crop Canvas Size...

Duplicate... Clrl+Shift+D

Rename...

Scale... Clrl+E

Rotate 4

Zoom 3

Lookup Tahles 4

Figure 8.33: Adjusting the contrast, brightness, and color of an image.

8.4.1.4 Selecting a Color Palette for ASC Grid Images

The image in Figure 8.32 was generated by one of Kepler's Ecological Niche
Modeling workflows (GARP_SingleSpecies_BestRuleSet-IV.xml), which displays an
ASC grid file that represents the possible distribution of a species. For each cell in
the ASC grid, the workflow calculates the likelihood of a species being present. The
grid file is displayed using the "fire" palette, which assigns brighter colors to higher
pixel values (in general, cells where there is a higher likelihood of species presence
have higher values). To change the look of the map (perhaps to prepare it for a black
and white publication or to find colors that match the look and feel of a
presentation), simply select a new palette under the Image > Lookup Tables... menu
(Figure 8.34).

295

Chapter 8

¢ Imagel E] Ak

File Edit Image Process Analze Plugins Window Help

Balc e ' 'J_lﬂﬂld_l_l_l_l_l_l

Segmented Adjust

Show Info... Ctri+l |

Properties... Ctrl+Shift+P

Color ’

Stacks » ’

Crap

Duplicate... Ctrl+Shift+D

Rename...

Scale... Clrl+E

Rotate 4

Zoom ’

Lookup Tables ¥ Fire
Grays
Ice
Spectrum
3-3-2RGB
Red

Figure 8.34: Using the Image > Lookup Table menu to customize the look and feel of a displayed ASC
grid file.

The selected color palette can be further customized using the Brightness and
Contrast settings.

8.4.2 The IJMacro Actor

In addition to opening and displaying images, the I/Macro actor can be programmed
to access all of the powerful functionality of Image] using a macro--a simple
program that automates a series of Image] commands. Macros are written in the
Image] Macro Language, though in most cases users do not have to learn it. This is
because (1) Image] already has a large library of Macros that can be cut and pasted
into the I/Macro actor and (2) Image] macros can be easily created using the
Recorder, accessed under Plugins > Macros > Record... menu.

The workflow in Figure 8.35 uses an IJMacro to open an ASC grid file, adjust its
brightness and contrast settings, and assign a color palette.

296

Chapter 8

SDF Director

® DawDirectory. property("KEPLER®)+*Aibtesidataigarp”
®number_Of_heratons: 10

NOTE: Each iraton requires 10-20 seconds on a typical desiiop PC
® Species_Name: "Wephits_mephitis”

eNumBest 3

Name of Species

Right-click the actor and select 'Oy

> Species_Name

Image output by workflow
SpeciesNama,

)
angitude_lasivde_table o3
I - DataPoints
DataDireciory+“idigir_data_mephitis dar*

Add Gnds

Output Be path and name
t} DataDirectiony+ "+ Species _Name+" MargedR

A

Figure 8.35: An Ecological Niche Modeling workflow (GARP_SingleSpecies_BestRuleSet-1V.xml) that
uses an IJMacro actor to customize the graphical display of the workflow output.

Note that ASC grid files cannot be opened natively with Image]. To open an ASC file,
one must evoke the ASC TextReader plug-in, which can understand the format. The
Macro used by the IJMacro actor in the ENM workflow calls the ASC reader plug-in

as well as a number of other commands used to adjust the Brightness/Contrast
settings and select a color palette (Figure 8.36).

Edit parameters for [JMacro

Z
1./ macrostring:

run("ASC TextReader™, "open= FILE "):
run("Brightness/Contrast...");
setMinindMsx (-10, 10) ;

run("Fire™) ;

filerURL

Ciikepler2007031 3% /lib/testdata) garpiMephitis_mephitis_MergedResul, asc

firirgsPerIberation; 1

Zommit] [Add] [Remove] [Restore DeFauIts] [Preferences] [Help] [Zancel

Figure 8.36: The parameters of the 1JMacro actor.

297

Chapter 8

To create a Macro like the one used in Figure 8.35, select Macros and then Record
from the Plugins menu. A macro record window opens (Figure 8.37).

-

¢ Recorder g@w

Mame: |Macro Create ?

Figure 8.37: The ImageJ macro recorder.

Once the recorder is open, simply perform the operations the macro should
perform. For example, to set the Contrast/Brightness of an image, select Adjust >
Brightness/Contrast from the Image menu. The action is "recorded" in the macro
record window in Macro Language: run ("Brightness/Contrast..."); Any
adjustments made to the settings will be recorded as well. Once the macro has been
"designed by hand" and recorded, it can be cut and pasted into the macroString
parameter of the [/Macro actor.

For a library of over 200 ready-made Image] macros, see the Image] macro library at
http://rsb.info.nih.gov/ij/macros/.

8.5 Spatial Data: Geographic Information Systems (GIS)

The Kepler component library contains a number of GIS actors, which are used to
capture, manage, analyze, and display all forms of geographically referenced
information. From actors designed to interface with the Geospatial Data Abstraction
Library (GDAL, a translator library for raster geospatial data formats), to actors that can
display geographic information encoded as Geography Markup Language (GML) or

298

http://rsb.info.nih.gov/ij/macros/

Chapter 8

ESRI shape files, Kepler provides support for a wide variety of geographic formats
and systems.

8.5.1 Masking a Geographical Area with the ConvexHull and CVToRaster Actors

Masks, which “black out” areas of a map that are not of interest, can be used to
isolate a specific geographic region (Figure 8.38). Kepler's environmental niche
modeling (ENM) workflows use masks to help generate species' absence points
from a defined area (only the area where species occurrences have been noted), for
example. For more information about Kepler's ENM workflows, including in-depth
instructions for creating a mask file for ENM purposes, please see the Guide to ENM.

The Kepler library contains several actors that are particularly useful for creating
mask files: ConvexHull and CVHullToRaster. The ConvexHull actor constructs a
convex hull (the smallest polygon that contains a given set of geographic points) for
an area of interest. The convex hull is derived from a set of input data points, which
consist of a longitude and latitude value (see
KeplerData/workflows/module/outreach-2.1/data/garp /DataPoints.txt for an
example). The CVHullToRaster actor receives a convex hull and creates and saves a
mask file from it. Points outside the convex hull are assigned a value of "NO_DATA".

299

Chapter 8

weald_T204340. Jpg ok
YIONIED parwis FOE 1513

HalRater tet

)
-~
g
®
=
]
o,
g
A
g
=]

Name to apply to the
generated convex hull

ShowlLocations

Hull Data File Name _

é i:'rr:n;arr,('KE PL F:R:| -

Raswer Data File Name
({» propemy"KEPLER 1+ " HullRaser m'j‘r

............................ CV Huil to Raster " WMacro

ol

Name to apply to the E
generated mask file :

o MaplLocaton: property("KEPLER")+"AibAmagesAvordd_T720:360 jpg*

Figure 8.38: Using ConvexHull and CVHulltoRaster actors to generate a mask file ("HullRaster.txt").

The name and location of the convex hull file are passed to the CVHullToRaster actor,
which creates and saves a mask file with the correct resolution and extent. The
resolution (cellsize) and extent (numrows and numcols) are specified by the actor's
parameters (Figure 8.39).

Edit parameters for CV Hull to Raster
1?/ xllcorner: 1800
yllcormer: -a0.0
cellsize: 0.5
LMo 360
numcols: 720
Use disk starage (For large grids):
class: org.ecoinformatics. seek. gis. jawa_gis CYHUll2Raster
semanticTypedo: urn:lsid:localhost:onko: 1: 1 #GISFUnckionActaor
semanticTypell: urn:lsid:localhost :onka: 2: 1 #GeometricOper ation
Zornmit] [Add] [Remove] [Restore Defaults] [Preferences] [Help] [Zancel

Figure 8.39: The parameters of the CV Hull to Raster actor.

300

Chapter 8

The CVHullToRaster actor writes the mask file to the location specified via the
rasterFileName portand outputs the name of the mask file.

8.5.2 Geospatial Data Abstraction Library (GDAL) Actors

The Geospatial Data Abstraction Library (GDAL) is an open source software package
designed to read, write, and manipulate a wide variety of Geographical Information
System (GIS) raster grid files.*” Kepler has several very useful actors that use the GDAL
library to perform geospatial file transformations: the GDALFormatTranslator actor
reads a geospatial raster file and translates it to a specified format (e.g., JPEG, AAIGrid,
etc); the GDALWarpAndProjection actor "stretches" or "warps™ a geospatial raster file
(e.g., a digital elevation model) from one cartographic projection to another.

Because working with high-resolution geospatial raster files can be resource-intensive
and time consuming, Kepler's GDAL actors check the Kepler file cache to see if the
transformed file already exists (from a previous workflow iteration, for example) before
performing a translation.

The workflow (Figure 8.40) is designed to download a set of topographical data for
South America (Hydrolk data, a dataset developed by the U.S. Geological Survey's
EROS Data Center) via the Kepler EarthGrid. If the data have already been
downloaded, the workflow will access them from a local cache. Kepler's GDAL actors
are then used to transform the data: first to change the map projection and then the
format.

SOF Director

e ResultDirectory. propedy("KEPLER™» " libles xata\gam/spatallayers”®

Hydro1k South America - DEM

=

Array Eloment
GOAL Warp and Projecton

armat Xr.‘ma!;l'ur
d Rescaler

SA Mask
Southe Amernca Mask Slo

& propety("KEPLER "+ AibNos idataigarp/H
{

Qutput File - South Amarica
(% ResuliDwectory+HIK_SAasc®

Figure 8.40: Using the GDAL actors to transform geospatial data. Note that the initial download of the
Hydrolk data may take as long as 30 minutes with a reasonably fast PC.

47 GDAL website, http://www.gdal.org/index.html

301

http://www.gdal.org/index.html

Chapter 8

Once the Hydro1lk data is downloaded to the cache, the data are extracted from their
zip file. The Hydrolk South America DEM actor's DataOutputFormat parameter
(Figure 8.41) instructs the actor to unzip the downloaded data into the Kepler cache
and output the file name of the dataset (actually an array of file names: the file name
of the raw data as well as the file names of the associated meta data files). An
ArrayElement actor reads the array of file names and extracts the first element,
which is the name of the raw dataset. The name of the raw data is then passed to
downstream actors for further transformations.

Edit parameters for Hydro1k South America - DEM
;\? / EML File: Browse
Data File: Browse
Se ¢ Ty TR SOt americedo. ™
Data Qutput Format: As UnCompressed Fle Name|) v !
i it Pk —_—
Allow lenlent data parsing: iAs Table
Check for latest version: s Row
W\s Byte Array
recordid: lAs UnCompressed File Name
endpoint: WAs Cache Fle Name
namespace: s Column Yector
As ColumnBased Record
[Comnit] [Add] [Remove] [Rcstorc Defauks] [Preferences] [Help l [Cancel]

Figure 8.41: The parameters for the Hydrolk South American -DEM actor. Selecting "As
UnCompressed File Name" as the value of the Data Output Format parameter instructs the actor
to unzip the dataset into the Kepler cache.

The Hydrolk data use a Lambert Azimuthal Equal Area coordinate system
projection (for information about the projection, see the dataset's meta data: right-
click the data actor and select Get Metadata). The GDALWarpAndProjection actor
converts this projection to one that uses a latitude/longitude system. The input and
output projection formats are specified by the actor's parameters (Figure 8.42). The
formats must be of a form used by the GDAL Warp utility (a Lambert Azimuthal
Equal Area Projection could be specified as +proj=laea+lat 0=45+long 0=-
100+x_0=0+y 0=0, for example). For more information about supported formats, see
www.remotesensing.org/geotiff/proj_list/.

302

Chapter 8

Edit parameters for GDAL Warp and Projection
P inout . ;
“‘“.-1"/ INpuk params: +proj=laga +lak_0=-15 +on_0=-60 +x_0=0 +y_0=0|
output params: +praj=latlong
output Format: GTifF
Cache options: Carche Files but Preserve Location “
firirgsPerIberation; 1
Carmnmit] [Add l [Remove l [Restore Defaults] [Preferences] [Help] [Cancel

Figure 8.42: The parameters of the GDALWarpAndProjection actor.

Once the projection has been updated, a GDALFormatTranslator actor converts the
raster format (GeoTiff) to a new format (ASC raster grid). Available formats are
listed in a drop-down menu (AAIGrid, DTED, PNG, JPEG, MEM, GIF, XPM, BMP,
PCIDSK, PNM, ENVI, ESRI, PCI, MFF, MFF2, BT, FIT, USGSDEM) in the actor
parameters (Figure 843). The actor's Cache options parameter specifies
whether the output should be copied to the cache ("Copy files to cache"), copied to
the cache as well as the directory where the input raster is stored ("Cache files but
preserve location"), or not cached ("No caching"). If "No caching" is selected, the
actor will not cache the translated file and will ignore all previously stored cache
items. Select this option to force the actor to perform a translation even if the input
file was previously translated and cached.

Edit parameters for GDAL Format Translator
2 tpuk k£ B
- /‘ aubpuk bype: Byte v
oukput Format: AAIGHd W
Cache options: Cache Files but Preserve Location W
firingsPerTkeration: 1
Zarimit] [Add l [Rennve l [Restore DeFauIts] [Freferences] [Help] [Cancel

Figure 8.43: The parameters of the GDALFormatTranslator actor.

After the map has been translated, it is rescaled and masked (so that only
continental data is displayed). The GridRescaler actor sets the x and y values for the
lower left corner of the output grid, the cell size, and the number of rows and
columns (Figure 8.44). Either the "Nearest neighbor" or "Inverse distance" weighted
algorithms can be used to calculate output cell values. If the “Use Existing File”
checkbox is selected, the actor will check to see if a file with the output file name
already exists. If so, then the actor skips all actions except for returning the existing
file name (i.e., the actor does not "re-translate” the source data). Selecting the "use
Existing File" parameter helps avoid lengthy rescaling calculations that have already
been completed in prior runs. If the checkbox is not selected, any existing output file
with the same name will simply be overwritten.

303

Chapter 8

Longitude / latitude
of desired lower left corner

?/ xlicorner:
ylkcorner:
celisize:

NI OIS
numcols:
algorithm:
outputFleName:

use Existing File:

Edit parameters for Grid Rescaler2

use disk storage (For large grids):

| -7601'!'0?“': ey [—V Add

3600

Nearest Nesghbor

-t

|°"""-'°'-°"""""-'.

+ Desired resolution |

] .

- in degrees -
/

' .
' Desired extent as |
)
' number of rows |
]
and columns i

$ResultDirectory/NewTest_NA.asc Browse

O
2

Remoave J [F:‘.'estote'l:;ef-ajts;l | Préfevences J |‘ Héiﬁ J [\'.;ar:cef

Figure 8.44: Parameters of the GridRescaler actor.

The example workflow uses a MergeGrid actor (called SA_Mask) to mask the
transformed map. The MergeGrid actor receives the map data as well as the name of
a mask file. Masked areas (e.g., oceans) will be assigned a value of "NO_DATA". The
results are displayed with an I/Macro actor (Figure 8.45).

H1K_SA.asc {25%)

B[=1)%]

3600%1 800 piels, 32-bit, 26MB

Figure 8.45: A topographical map of South America, output by the example workflow.

304

Chapter 9

9. Domain Specific Workflows

This chapter contains example workflows that have been developed or are currently
under development for specific domains: chemistry, ecology, geology, molecular
biology, oceanography, and phylogeny.

9.1 Chemistry

The Kepler project in conjunction with the RESURGENCE project (RESearch sURGe
ENabled by CyberinfrastructurE) has developed a general workflow infrastructure for
computational chemistry that allows high-throughput calculations distributed on a
computational grid.*® To that end, the Kepler library contains a number of components
designed to interface with commonly used computational chemistry tools such as
GAMESS (General Atomic and Molecular Electronic Structure System), Open Babel,
Babel, and QMView. To use the full suite of computational chemistry actors, these
applications must be installed on the local system.

The workflow in Figure 9.1 demonstrates how Kepler can be used to prepare and
run a GAMESS experiment. All of the required applications necessary for file format
translation, display, and processing are accessed and executed via workflow actors.
Kepler actors also create all of the necessary directories and text files. The workflow
is parameterized to allow for molecule selection, for setting the main scientific
parameters, and for parsing the underlying program codes. Each of the actors in the
workflow in Figure 9.1 is a composite actor containing the individual actors
required to perform the workflow step.

For detailed information about the GAMESS workflow, please see
https://code.kepler-project.org/code/kepler-docs/trunk/legacy-
documents/user/WFDocumentation/Local GAMESSPrepareRunDisplay.doc

Preparing and running a GAMESS Experiment and displaying the results

visually

Workflow Authors:

Wibke SUDHOLT, Kim BALDRIDGE: University of Zurich
[lkay ALTINTAS: San Diego Supercomputer Center

48 RESURGENCE project home page, http://ocikbws.uzh.ch/resurgence/index.html

305

http://ocikbws.uzh.ch/resurgence/index.html
http://ocikbws.uzh.ch/resurgence/index.html

Chapter 9

Convert molecule files
to gamin format

¥

'

'

'

'

[

[}

’
’

amessinputiandle

| Create a GAMESS input file |
! from gamin file. '
! Convert output to PDB '/
f i : ! (Protein Data Bank) |
' Run the GAMESS | piformeal oo oot '
| experiment ' o=’
s ,"/- be’l" Om\View Display

outputFomatHandie medoc .-.~rm!umu~-|

-
>

"
4

QamessdnOuHancy,
gamesDataHandle

.
I |
’

_________________________ &y
'
University of Zunch
puter Center
'

: Display the optimized
- molecule structures

Figure 9.1: Preparing and running a GAMESS Experiment and displaying the results visually. This
workflow runs high-throughput calculations of several molecules using the GAMESS quantum
chemistry application. When completed, this workflow will enable users to obtain physical
properties of all the molecules involved. The workflow will also display the final (optimized)
structures of these molecules using QMView visualization software.

The Preparing and running a GAMESS Experiment and displaying the results visually:
workflow can be found in the workflows/chem/ directory. Please note that these
workflows are under development and may not be fully functional.

9.2 Ecology

The National Science Foundation-funded SEEK (Science Environment for Ecological
Knowledge) project-- the initial contributor to the Kepler project -- chose Ecological
Niche Modeling (ENM) as the prototype Kepler application. SEEK selected this
application because there were clear gains to be made through applying cutting-
edge technology to niche modeling.

The project makes use of the data resources of the distributed Mammal Networked

Information System (MaNIS; Stein and Wieczorek, 2004) to carry out a review of
likely climate change effects on the over 2000 mammal species of the Americas,

306

http://seek.ecoinformatics.org/

Chapter 9

constructing maps of potential species distributions under future climate scenarios.
This analysis will be the broadest in taxonomic and geographic scope carried out to
date, and the computational approach, the Kepler workflow (Figure 9.2) will be
completely scalable and extensible to any region and any suite of taxa of interest.

For detailed information about ENM workflows, please see Kepler's Guide to ENM.
Example workflows can be found in Kepler's demos/unsupported/ENM directory.

Ecological Niche Modeling
Workflow author:
Dan Higgins

SDF Director

Save_Results_in_2Zip

Bes_Rulesets ara
NOTE: Each iteration requires 10-20 seconds on a typical desktop PC. |

@ DataDirectory. property("KEPLER")+"/libftestdata/garp”

e number_Of herations: 10

@ Species_Name: *Mephitis_mephitis*

Future_Climate_Models
e NumBest 3

'‘Open Actor' to see the details

Name of Species

[> Species_Name

Calculate Best Rulesets
Boest Ruleset armay

PECIeS
Bast_AS!

Specigshlame,

J

longitude_latitude_table C_Maps
| - DataPoints

i> DataDirectory+"(digir_data_mephitis.dat®

Qutput file path and name
|:ll> DataDirectory+"“+Species_Name+"_MergedR..

Figure 9.2: The GARP_SingleSpecies_BestRuleSet-1V.xml workflow, discussed in more detail in the
Guide to ENM.

307

Chapter 9

- _
- Mephitis_mephitis_MergedResult asc | & Mephitis_mephitis_MergedResult_FuturePred - Mephitis_mephitis_MergedRosult_FuturePrediction_WCC_2

F20w250 ptewls; 32-bit 101 3K 7200350 ptenls; 32-bit 1013K 5 30360 paols. 32-bet 101 2k

Figure 9.3: Maps output by the GARP_SingleSpecies_BestRuleSet-1VV.xml workflow. The map on the far
left displays a predicted distribution of Mephitis mephitis based on historical climate data. The map in the
center displays a prediction based on future climate data for 2020. The map on the far right displays a
prediction based on future climate data for 2050. The workflow also outputs a list of files used to generate
the predictions (not pictured).

The Ecological Niche Modeling workflows are in demos/unsupported/ENM/.

9.3 Geology

The Kepler project in conjunction with the Geosciences Network (GEON) Project
(http://www.geongrid.org) has developed a wide variety of workflows for
geosciences research: a workflow for the integration and visualization of seismic
events and their related fault orientations with other image (map) services*?;
distribution, interpolation and analysis of LiDAR (Light Distance And Ranging) point
cloud datasets>%; and mineral classifications1, among others.

The workflow in Figure 9.4 is used to retrieve mineral classification points from the
Virginia Igneous Rock database and to classify the points. The workflow connects to
a database of mineral compositions of igneous rock samples and selects data points.
This data, together with a set of Igneous rocks diagrams (Figure 9.5) are fed into a
Classifier sub-workflow, which automates the often time-consuming process of
classifying mineral samples via a series of diagrams.

49 Jaeger-Frank, Efrat, Chaitan Baru, Ashraf Memon, llkay Altintas, Bertram Ludaescher, Ghulam Memon
& Dogan Seber. Integrati.ng Seismic Events Focal Mechanisms with Image Services in Kepler. 2005 ESRI
User Conference Proceedings

%0Jaeger-Frank E, Crosby C J, Memon A, Nandigam V, Arrowsmith J R, Conner J, Altintas | and Baru C
2006 Three Tier Architecture for LIDAR Interpolation and Analysis 1st Int. Workshop on Workflow
systems in e-Science in conjunction with ICCS

51 Ludscher, B, K. Lin, S. Bowers, E. Jaeger-Frank, B. Brodaric, C. Baru. Managing Scientific Data: From
Data Integration to Scientific Workflows. GSA Today, Special Issue on Geoinformatics, 2005.

308

http://www.geongrid.org/
http://www10.giscafe.com/link/display_links.php?category_id=4236
http://www10.giscafe.com/link/display_links.php?category_id=4236

Geon mineral classification workflow
Workflow Authors:
Efrat Jaeger, Bertram Ludaescher, Krishna Sinha.

Chapter 9

rrats COmpon 8om

Odgrams and Fanstons

PN Director

TOGOAIOCK Nam 8

Expression

"SELECT * FROM IGROCKS ModalData WHERE SSID =" + 551D *]

Diagrams Data

@OV DS K NEme

Result

Figure 9.4: The GEON mineral classification workflow, which determines the position of the sample

points in a series of diagrams such as the ones shown in Figure 9.5.

ortes ookt P =
= D D | Derch (ifvortes @rimds B - =
o5 [8) Cmrert os S e [Gosmes| 1= =a
e < £ e - - os fgmess P TH- ™
o | adbess [@ ez =] PG [Cotge-[=
: Piaz
diorite gabbeo |
wroosse A
N -
| S o
rtho
& o oo
diorite gathbro anothosite
= S e =

Figure 9.5: Igneous rock classification diagrams. If the location of a sample point in a non-terminal
diagram of order n has been determined (e.g.,, diorite gabbro anorthosite, left), the corresponding
diagram of order n+1 is consulted and the point is located therein. This process is iterated until the

309

Chapter 9

terminal level of diagrams is reached. The result is shown on the right, where the classification result
is anorthosite)>2,

The Geon mineral classification workflow and other earth science workflows can be
found in the workflow/geo/ directory. Please note, these workflows are under
development and may not be fully functional.

9.4 Molecular Biology

The Kepler project in conjunction with the Scientific Process Automation (SPA)
project has developed a set of special "bio-services” actors that allow the scientist to
invoke standard tools such as BLAST or Transfac locally or remotely as web services.>3

The Promoter Identification Workflow (PIW) shown in Figure 9.6 links genomic biology
techniques such as microarrays with bioinformatics tools such as BLAST to identify and
characterize eukaryotic promoters. Starting from microarray data, cluster analysis
algorithms are used to identify genes that share similar patterns of gene expression
profiles which are then predicted to be co-regulated as part of an interactive biochemical
pathway. Given the gene-ids, gene sequences are retrieved from a remote database (e.qg.,
GenBank) and fed to a tool (e.g., BLAST) that finds similar sequences. In subsequent
steps, transcription factor binding sites and promoters are identified to create a promoter
model that can be iteratively refined.

For detailed information about this workflow, please see the original article.>

Promoter Identification Workflow (PIW)

Workflow Authors:

Matthew Coleman @ Lawrence Livermore National Laboratory

Ilkay Altintas, Bertram Ludaescher, Yang Zhao @ San Diego Supercomputer Center

52 |bid.

53 SPA web site, http://www-casc.lInl.gov/sdm/documentation/overview.php

54 Altintas, Ilkay, Oscar Barney, Zhengang Cheng, Terence Critchlow, Bertram Ludaescher, Steve
Parker, Arie Shoshani6, Mladen Vouk. Accelerating the scientific exploration process with scientific
Workflows. Journal of Physics: Conference Series, 2006

310

https://sdm.lbl.gov/sdmcenter/
http://www-casc.llnl.gov/sdm/documentation/overview.php

Chapter 9

PN Director @dir_log: HOME + “spa/PIW"

$Revision: 1.1 %
$Author: xin $

ssionNumberList

pressiond

Run Clustalw

Merge and Discard

Parse Clustal

Figure 9.6: The Promoter Identification Workflow (PIW)

The Promoter Identification Workflow can be found in the /workflow/spa/PIW/
directory of the nightly Kepler build. Note that these workflows are under
development and may not be fully functional.

9.5 Oceanography

The Kepler project in conjunction with the ROADNet (Real-time Observatories,
Applications, and Data Management Network) project has developed an integrated,
seamless, and transparent information management system that will deliver
seismic, oceanographic, hydrological, ecological, and physical data to a variety of
end users in real-time.>>

%5 ROADNEet project website, http://roadnet.ucsd.edu/

311

http://roadnet.ucsd.edu/
http://roadnet.ucsd.edu/
http://roadnet.ucsd.edu/

Chapter 9

The Graphical Display of Real-Time Geophysical Data workflow (Figure 9.7) displays
images taken on the research vessel, the Roger Reville in real time. For more
information about the technologies used in this workflow, please see http://nibot-
lab.livejournal.com/28612.html.

Graphical Display of Real-Time Geophysical Data
Workflow authors:
Tobin T. Fricke, University of California

o R b b ' SDE Director
| The OrbImageSource |

. actor connects to the .|

! ORB and collects the !

. image packets. ' !
' ' | The ImageDisplay actor

| displays the streamed image

"*~; Images taken from the E
research vessel the Roger

i Revelle are streamed to an |
' Antelope ORB H
! ("Object Ring Buffer")

Figure 9.7: The Graphical Display of Real-Time Geophysical Data workflow displays images taken on the
research vessel, the Roger Reville in real time.

The Graphical Display of Real-Time Geophysical Data workflow as well as other
related workflows can be found in the /workflows/orb/ directory of the nightly
Kepler build. Note that these workflows are under development and may not be
fully functional.

9.6 Phylogeny

The Kepler project in conjunction with the Cyberinfrastructure for Phylogenetic Research
(CIPRES) project has been developing components and workflows to enable large-scale
phylogenetic reconstructions on a scale that will enable analyses of huge data sets
containing hundreds of thousands of bio molecular sequences.>® Please download the
Cipres-Kepler software package from http://www.phylo.org/sub_sections/software/ to
begin building scientific workflows for phylogenetic data analyses.

5 CIPRES project website, http://www.phylo.org/

312

http://nibot-lab.livejournal.com/28612.html
http://nibot-lab.livejournal.com/28612.html
http://www.phylo.org/
http://www.phylo.org/sub_sections/software/
http://www.phylo.org/

Chapter 9

The Alignment-Inference-Visualization Workflow (Figure 9.8) reads a Nexus file, uses
ClustalW to perform a multiple sequence alignment on the data, constructs the
phylogenetic tree using PAUP, and reads and displays the tree using the Forester tree
viewer. For detailed information about the workflow, please see the CIPRES website,
http://www.phylo.org/sub_sections/software/ .

PN Director

+ Choose the Nexus

E input file E
ST §ree
" Get the subset of |
: the aligned
| sequences
= A ! RunPAUPfor !
SubsetChooser PAUP Infile | treeinference |

PhyloDataReader TreeParser

‘ FileReader

—
—_—

TreeVizForester

|

‘: Display the tree ;

Figure 9.8 The Alignment-Inference-Visualization Workflow®?

The Alignment-Inference-Visualization Workflow is included with the Cipres-Kepler
software package.

57 Guan, Zhijie PowerPoint presentation of CIPRES in Kepler (given at the 2006 Evolution meetings).

313

http://www.ebi.ac.uk/Tools/clustalw/index.html
http://paup.csit.fsu.edu/
http://sourceforge.net/projects/forester-atv/
http://www.phylo.org/sub_sections/software/
http://www.phylo.org/CIPRES.2006.keplerdemo_zg.ppt

Appendix A

Appendix A: Creating New Actors

One of the simplest ways to create a new actor (and a good way to get started
building your own actors immediately) is to customize an existing actor. Actors can
be customized, saved to a KAR file and displayed in the library and/or uploaded to
the repository--all from the Workflow canvas. Users need not know Java or any
other programming language to create powerful new components in this way. Users
who are familiar with Java can also choose to write and compile new actors from
source code. In this chapter, we will look at how to create an actor by customizing
an existing one, as well as how to create an actor "from scratch" by extending
existing Java code, compiling it, and importing the new actor into Kepler.

In Section A.1, we will look at how to create, save, and share a customized Expression
actor. In Section A.2, we will look at the structure of an actor and how actors work:
how the code is structured, how to create ports, parameters, and behaviors (i.e.,
methods) and how to compile custom actors and then import them into the Kepler.
At the end of the chapter, we step through tutorial examples designed to introduce
you to the basics of building and incorporating your own actors into Kepler.

A.1 Building a Custom Actor Based on an Existing Actor

One of the simplest ways to create a new actor is to customize an existing actor--
usually either an Expression or RExpression actor, which are easy to modify in useful
ways. Users can add ports, customize parameters (such as an R-script or
expression), and create powerful components that are easily saved and stored in a
Kepler archive (KAR) file, which can be shared with others.

In this section, we will take a look at how to create an actor (the Shannon Index
actor) that evaluates an equation and outputs the result. The Shannon Index actor,
which is used to calculate a measure of biodiversity in categorical data, is based on
an Expression actor included in the standard Kepler library.

The Shannon Biodiversity Index can be calculated using the following equation>8:

o

#==Z [G/ /)]

=]

%8 From Statistical Ecology by John A. Ludwig and James F. Reynold, 1988

314

Appendix A

In the above equation, ni is the number of individuals in each species (the
abundance of each species) S represents the number of species in the sample (the
"species richness"); and n is the total number of individuals. >°

Before an Expression actor can evaluate an equation, the equation must be
"translated" into the Kepler expression language. For detailed information about the
expression language, please see the Ptolemy documentation. The Shannon
Biodiversity Index equation is written in the expression languages as follows:

-1.0*sum (map (function (x:double)
(1.0*x/sum (numSp)) * (log (1.0*x/sum (numSp))), numSp))

numSp is an array that must be provided to the actor. Each element in the array
represents the species abundance of a species in the sample. In other words, the
number of elements in the array is the number of species in a sample (S), and the
value of each element is the number of individuals of the corresponding species (ni).
For example, the array {10,20,30,40} represents a data set containing four species,
one species having 10 individuals, the next having 20 individuals, etc. Summing the
elements gives the total number of individuals (n), which is equal to 100 in this
example.

To begin using this equation, paste it into the value parameter of an Expression
actor, add an input port named numSp (which will receive the data set array), and
rename the actor "Shannon Index" to better identify its function. This actor can now
be connected to other actors and used in a workflow (Figure A.1).

SDF Director

Constant

> {10,20,30,40}

Display

Shannon Index
-1.0*sum(map(function(xdouble) (1.0*x'sum{numSp))*(log(1.0*...

Figure A.1: A simple workflow that calculates the Shannon Biodiversity Index, used to measure diversity
in categorical data.

%9 Wikipedia, http://en.wikipedia.org/wiki/Shannon_index

315

http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf
http://en.wikipedia.org/wiki/Categorical_data
http://en.wikipedia.org/wiki/Shannon_index

Appendix A

To save the Shannon Index (or any other customized actor) to your library, right-
click the actor and select the Save Archive (KAR)...” menu item. This will save the
actor in a KAR file on your computer’s hard drive. If that KAR file is in a folder that
is designated as a Local Repository for Kepler components it will appear in the
Component Library within Kepler.

A KAR file (Kepler ARchive) is a zipped collection of files that can easily be shared
with others. To examine the contents of a KAR file, open it with a zip file editor (like
WinZip). The Shannonlndex.kar file contains two files: ‘Manifest MF’ and an xml file.
These files contain information that Kepler uses when building the actor library and
displaying the actor. For more information about the files, see Section A.4.1.

To begin using the actor, make sure the KAR file is saved in a Local Repository
folder. Press the “Sources” button just below the search field in the Component
Library, here you can add, rename, and remove Local Repository folders. To
resynchronize your Component Library with the KAR files in your local repositories
you can press the “Build” button in the Component Preferences dialog that opened
when you pressed the “Sources” button. You can now search for your new actor in
the Component Library.

A.2 Creating a New Actor by Extending a Java Class

Typically new actors are created by extending an existing Java class. A class is the
blueprint from which individual objects (e.g., an instance of an actor displayed on
the Workflow canvas) are created.®® By extending a class, the new actor will inherit
all of the commonly used attributes and behaviors from the parent class—ports and
parameters, for example, or what tasks to perform at different times (i.e., methods).
Only new behaviors and attributes need be programmed. In addition to eliminating
the need to reinvent the wheel each time an actor is created, extending base classes
helps maintain consistent naming conventions, as the port and parameter names are
inherited (eliminating the confusion created when one actor has an input port called
"in" and another "inSystem", etc).

To create a new actor and begin using it, you need install Kepler and the Java
Development Kit (JDK). To see if you have the JDK running (not just the Java
Runtime Environment (JRE)), navigate to the directory in which Java is installed and
then open the "bin" directory (e.g., $JAVA_HOME/bin). If the directory contains a
program called javac.exe, you are ready to get started! If you don't see javac.exe, or

you're unsure in any way, go to
http://www.oracle.com/technetwork/java/javase/downloads/index.html and
download JDK6.

0 The Java Tutorials, http://java.sun.com/docs/books/tutorial/java/concepts/class.html

316

http://java.sun.com/docs/books/tutorial/java/concepts/class.html

Appendix A

Note that you can use any application to code actors—from Eclipse, a common code-
development environment to a simple text editor. Full instructions for using Eclipse
with Kepler are available on the_Kepler wiki, where the build system instructions
are available.

A.2.1 Coding a New Actor

The source code of Kepler actors is divided into several sections with highly visible
delimiters (Figure A.Z). The sections consist of: constructors, public variables
(including ports and parameters), public methods, protected methods, protected
variables, private methods, and private variables, in that order.6! The constructor
creates an instance of the class (the actor) and the methods specify the actor
behaviors (such as what to send to an output port). "Public”, "protected”, and
"private” specify access levels. Please see the Java documentation for more
information.

Because Kepler is a collaborative project, adhering to consistent formatting and
naming conventions is especially important. Please see Sun's Developer Network for
information about best practices.

Each Java source begins with a brief (usually one sentence) description of the actor
that identifies what the actor does and how it is intended to be used. This line
appears at the top of the file, above the copyright notice and the Java import
statements. The copyright is a “BSD” (“Berkeley Standard Distribution”) copyright,
which is more liberal than the GPL (Gnu Public License). To view the copyright
license, right-click any actor in the default Kepler library and select Open Actor.

81 Hylands Brooks, Christopher, and Edward A Lee, Ptolemy 11 Coding Style

317

https://kepler-project.org/developers/reference/kepler-and-eclipse
https://kepler-project.org/developers/reference/kepler-and-eclipse
http://java.sun.com/docs/books/tutorial/java/javaOO/index.html
http://java.sun.com/docs/codeconv/

Appendix A

/* Ope lipe descripticn of the clasa.

copyright notice

"|'
package nane;
imports, in alphabetical order;

l’. ll' ll I‘. 4" l" l'. -.' l" II -" l" l" I / / J h'. l" l" l" l‘ / "' l" 1.' ". ". t" ", , / -" ,. 1" c‘, l'. t" 4" l, c‘, l.‘ l" l, / / / “ / l“ l'. l.‘ l’ l" l" t" i.. l" -" l" ""‘ "' l'. l" l" “)i‘, l" l‘, -l' l‘) ll' v" l“ l" t" ll' l" |" l'.
{11/ ClazzName
‘.' -

Clasz documentatica.

B R . i Constructors create
::‘.‘5,;;‘“,‘; d’;" e | the actor andits '
i TR | ports & parameters |
public class clazsName ... { S Rt e e S i

3 ' Public variables include port
constructors : and parameter definitions

:

)

|

y I "- ,- ." ‘[.I '.l "- '.l "l /- .'l "l 'I ." .'l .'l "l '.l J , “' ." .‘l ‘,l J " ‘,l "' J I "l "l "l "! f I "J "l “v /l /l .‘l "' "l J " "n ..l "' J l’ .'i '.l "l “' "g "l ; o -. --------------------------
LA

public variables e Y,

Public methods

L)

1]

include fire(),

FRRERRZIIEERERETR IR 0EI TR IR0 0000101001024 71021 initializeQ), ete. i

public methods A e s

public variabies, in alphabetical order

3 AT

l"“

public nethods, in alphabetical order -~

FERETEIRREE IR TERE LRI E 0T LRI 00 0EERE0EERLERIEE

i protected methods L SRR SRS oo
L S '
», * Protected methods and '

:

protected nethods, in alphabetical order variables are accessedby

E only some other actor classes;

FEILERET L0800 00 0L 0880 iiitirititirititic, i o i
it protected variables A R

G Al o s s o e e o g o

=

Private methods !
are used only by
this actor

1 private nmethods 4, o XK

protected variables, in alphabetical order

FEEEERERELPRIR LR LR L0808 8E 238 riiitidiiiesriiii
’
/

Nomwmpiwee

Private variables'

privats nstheds, in alphabstical order g $
g P are used only by :

FRREERERIIE IR R FREEERE IR L0 0EE0100000000004801024 7114, this actor i
it private varisbles s
’ ’
Lot
private variables, in alphabstical order s

Figure A.2: Generic actor template with major sections identified: constructors, public variables (including
ports and parameters), public methods, protected methods, protected variables, private methods, and private
variables.

The template in Figure A.2 shows the major sections of the actor Java code. We will
discuss each section in more depth in the next pages.

318

Appendix A

A.2.1.1 The Constructor

The constructor is the part of the Java code that creates each instance of the class
(i.e., each actor). The class behaviors (methods), ports, and parameters are defined
in other sections of the code. The constructor takes this "blueprint” and builds the
actor.

Each actor must have its own constructor (the constructor is not "inherited"). The
constructor contains documentation—Javadoc comments that are compiled when
the code is compiled—as well as Java code that builds the actor and its ports and
parameters.

The constructor section of code displayed in Figure A.3 contains the constructor

code for the Constant actor. Right-click the Constant actor and select Open Actor to
see the complete Java source code.

319

Appendix A

/////////////,é:”‘ PELLETEEIELEL PP EL iy

K114 Cons O iRt Ao Yt e

i e e e S e . Javadoc comments begin ;

| with */**" and end with "*/“. !
Produce a constant output. The value of the ‘==----== mmrmrmsssmmcmsmmmmmmn s
output is that of the token contained by the <i>value</i> parameter,
which by default is an IntToken with value 1. The type of the output

is that of <i>value</i> parameter.

@author Yuhong Xiong, Edward A. Lee
@version $Id: Const.java,v 1.52 2007/07/11 19:43:46 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bilung) eeeeeeeeea-
X7
public class Const extends LimitedFiringSource {

/** Construct a constant source with the given container and name. !
* Create the <i>value</i> parameter, initialize its value to i
'

)

* the default value of an IntToken with value 1. o R e [T
* @param container The container. ; Begin Constructor ;
* @param name The name of this actor. e ecememeememeeeecead
* (@exception IllegalActionException If the entity cannot be contai] =d
* by the proposed container. :
* @exception NameDuplicationException If the container already has.ian
* actor with this name. i
x/ :
public Const(CompositeEntity container, String name) E
throws NameDuplicationException, IllegallActionException { ;
super (container, name); E
value = new Parameter(this, "value"):; i
value.setExpression("1"):; i3,~ 5
D /

// Set the type constraint. : |
output.setTypeltleast (value); i Construct parameter |

Figure A.3: The constructor of the Constant actor.

The section of code displayed in Figure A.3 begins with the class name (Const) as
well as documentation for the «class. The Const class extends the
LimitedFiringSource class. In other words, the Constant actor will inherit the
functionality of the pre-existing class.

The class documentation for the Constant actor is:

Produce a constant output. The value of the output is
that of the token contained by the <i>value</i>
parameter, which by default is an IntToken with value
1. The type of the output is that of <i>value</i>
parameter.

Documentation is specified as Javadocs. Javadoc is a program distributed with Java
that generates HTML documentation files from Java source code files. Javadoc

320

Appendix A

comments begin with “/**” and end with “*/”, and should always proceed the class
definition, the constructor, and each defined port, parameter, and method to convey
to other users what the code does.®2 Note that the description can contain HTML
formatting (e.g., <i>value</i>).

Javadoc tags (e.g., @author ...) convey information about the actor's author, code
version, and status (Table 10.1):

@author Yuhong Xiong, Edward A. Lee
@version Id

@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bilung)

Javadoc Tag Value

@author The authors and contributors (e.g., Yuhong Xiong, Edward A.
Lee)

@version Version information. The default value $1d$ is replaced by

actual version information when the code is committed to
CVS (e.g. $Id: Const.java,v 1.52 2007/07/11
19:43:46 eal Exp $)

@since The release in which the class first appeared. Usually, the
release is one decimal place after the current release. For
example, if the current release is 3.0.2, then the @since tag
would read: @since Ptolemy II 3.1

@Pt.ProposedRating Proposed code rating. Each tag includes the color (one of
red, yellow, green, or blue) and the cvs login of the person
responsible for the proposed or accepted rating level. See
the Ptolemy documentation for more information.

@Pt.AcceptedRating Accepted code rating. Each tag includes the color (one of
red, yellow, green, or blue) and the cvs login of the person
responsible for the proposed or accepted rating level. See
the Ptolemy documentation for more information.

Table A.1: Javadoc tags used to identify a class

The constructor itself should also be preceded by a Javadoc comment. The Javadoc
comments that describe the constructor begin "Construct a ...", and explain what the
constructor is doing: creating an actor parameter called value and assigning it a
default value of 1, and throwing exceptions under certain circumstances. Ports and
parameters, which are defined under the Public Variables section of the actor code,
are instantiated in the constructor. We'll look more closely at how this is done in
Section 10.2.3 Public Variables: Actor Ports and Parameters.

62 See http://java.sun.com/j2se/javadoc/writingdoccomments/ for guidelines from Sun
Microsystems on writing Javadoc comments.

321

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://java.sun.com/j2se/javadoc/writingdoccomments/

Appendix A

A.2.1.2 Public Methods (Action methods and more)

How actors behave (e.g., what they output and when) is described by methods.
Kepler actors have a number of common "action” methods that tell the actor what to
do at various times during workflow execution: preinitialize(),
initialize(), prefire() ,fire(), postfire(), and wrapup ().
Different types of tasks happen at different points in the workflow. Note that by
convention methods are specified alphabetically in the actor's source code (Table
10.2).

Method Use

preinitialize() Set port types and/or scheduling information. The
preinitialize() method is only invoked once per workflow
execution and is invoked before any of the other action

methods.
initialize() Initialize local variables and begin execution of the actor.
prefire() Determine whether firing should proceed. This method is

invoked each time the actor is fired, before the actor is fired.
The method can also be used to perform an operation that
will happen exactly once per iteration.

fire() Read actor inputs and current parameter values, and produce
outputs.
postfire() Determine if actor execution is complete, schedule the next

firing (if appropriate) and update the actor's persistent state.

wrapUp() Display final results. The wrapUp() method is only invoked
once per workflow execution.

Table A.2: Common action methods and their use.
The public methods of the AddOrSubtract actor are displayed in Figure A.4. Only the

fire() method is defined--the other methods are inherited unchanged from the
parent actor (the AddOrSubtract actor extends TypedAtomicActor).

322

Appendix A

LIEELETERIITEE IR EESPEEL PRI PR R i Edriiiiirtiriiidiitidiili

1117 public methods b \

/*¥* If there is at least one token on the input poiEEZ';EE"'"""'""'E

* tokens from the <i>plus</i> port, subtract tokens from the E

<i>minus</i> port, and send the result to the i

<i>output</i> port. At most one token is read E

from each channel, so if more than one token is pending, the i

rest are left for future firings. If none of the input E

channels has a token, do nothing. If none of the plus channels H
have tokens, then the tokens on the minus channels are subtracted
from a zero token of the same type as the first token encountered

on the minus channels. é

L}

L

1

L}

L}

1

@exception IllegalActionException If there is no director,
or if addition and subtraction are not supported by the
available tckens.

E I R I

»

X/
public void fire() throws IllegalActionException { <~~~ "~~~ °~°777777T '
super.fire(); P A T St 1oy
Token sum = null; i fire() method |
for (int i = 0; i < plus.getWidth(); i++) {
if (plus.hasToken(i)) {

if (sum == null) {
sum = plus.get(i);
} else {

sum = sum.add(plus.get(i)):

}
}

for (int i = 0; i < minus.getWidth(); i++) { 5
if (minus.hasToken(i)) { !
Token in = minus.get(i); E

if (sum == null) { :

sum = in.zero(); '

}

sum = sum.subtract(in);

}

if (sum '= null) {
output.send(0, sum);

}

Figure A.4: The public methods (in this case, just the fire() method) defined for the AddOrSubtract actor.

Each method defined in the public method section should be preceded by a Javadoc
comment that describes what the method does and how it is used.

323

Appendix A

Note that the java code for the fire() method uses a number of other methods to
access and process data: the send() method sends data to a specified port channel;
the get() method retrieves data from ports; the getWidth() method returns the
number of channels of data received; the hasToken() method determines if a port
has available data. For more information about useful methods and syntax, please
refer to the Ptolemy documentation.

A.2.1.3 Public Variables: Actor Ports, Parameters, and Port-Parameters

Actor ports and parameters are created by including the relevant Java classes in the
actor's source code: usually TypedIOPort to create an input or output port,
Parameter to create a parameter, and PortParameter to create a port-parameter.
To use these classes, first add them to the imports list:

import ptolemy.actor.TypedIOPort;
import ptolemy.data.expr.Parameter;
import ptolemy.actor.parameters.PortParameter;

Figure A.5 displays the ports and parameters section of the AddOrSubtract actor,
which has three ports: two input ports, one called minus and the other plus, and
one output port called output) and no parameters. Note that each port declaration
is preceded by a Javadoc comment that describes the port and its use.

TIITTIIIELI P2 L2 L2 2EL LR L PP PR EL i iiriiiiiiiiitiidiiiiiisy
i ports and parameters YRR

/** Input for tokens to be subtracted. This is a multiport, and its E
* type is inferred from the connections. 4
1
1
L

1/

: |
public TypedIOPort minus; <€-------------- 1 Imputport . ___________________.!
/** Output port. The type is inferred from the connections. E
x/ e i
public TypedIOPort output; «g-------------- . Outputport:-..-.--.-.._.-.._-_-.-..f

/** Input for tokens to be added. This is a multiport, and its
* type is inferred from the connectiocns.
1/
: \
public TypedIOPort plus; e , Inputport « . ____________

Figure A.5: The input and output ports of the AddOrSubtract actor.

Though the ports are defined in the "ports and parameters” section of code, they are
actually created by the constructor. In other words, just declaring the ports will not

324

http://ptolemy.eecs.berkeley.edu/papers/almagest/index.html

Appendix A

create them. They must be instantiated, which is accomplished with the
AddOrSubtract actor's constructor code highlighted in Figure A.6.

/** Construct an actor in the specified container with the specified
* name.

* (@param container The container.
* (@param name The name of this adder within the container.
* (@exception IllegalActionException If the actor cannot be contained
x by the proposed container.
* (@exception NameDuplicationException If the name coincides with
2 an actor already in the container.
*/
public AddSubtract (CompecsiteEntity container, String name)

throws Il licationException {
ainer, name);
= new TypedIOPort (this, "plus"”, true, false);
plus.setMultiport (true);

minus = new TypedIOPort(this, "minus", true, false);
minus.setMultiport (true);
cutput = new TypedIOPort (this,

"output”, false, true);

iconDescription”, "<svg>\n"
"<rect x=\"-Z0\" y=\—-2U\" " + "width=\"40\" height=\"40\" "
"style=\"fill:white\"/>\n" + "<text x=\"-13\" y=\"-5\" "
"style=\"font-size:18\">\n" + "+ \n" + "</text>\n"

"<text x=\"-13\" y=\"7\" " + "style=\"font-size:18\">\n"
"_\n" + "</text>\n" + "</svg>\n");

R Y RO gt

Figure A.6: Constructing the ports of the AddOrSubtract actor.
The code that instantiates a port takes the following form:

portName = new TypedIOPort (arguments)

For example, the first instantiated port in Figure A.6 is the plus port:

[1] plus = new TypedIOPort(this, "plus", true, false);
[2] plus.setMultiport (true);

Line [1] instantiates the plus port. The first argument (i.e., this) is the container
of the port, this actor. The second is the name of the port ("plus"), which can be any
string, but by convention, is the same as the name of the public variable. The third
argument specifies whether the port is an input (it is in this example), and the
fourth argument specifies whether it is an output (it is not in this example). By
default, ports are single ports. Line [2] "overrides" the default, stating that the plus
port should be a multiport instead of a single port.

The constructor also sets type constraints. For example, if the plus port described

above requires input of type double, the following absolute type constraint could be
added to the constructor:

325

Appendix A

[3] plus.setTypeEquals (BaseType.DOUBLE) ;

More commonly, type constraints are specified as "relative type constraints,"
meaning that the type is equal to or greater than the type of another port or
parameter. If the type of the plus port should be the same as the type of the minus
port, the following line could be used:

[3] plus.setTypeSameAs (minus) ;
For full details of the type system, see the Ptolemy documentation.

Parameters are declared and constructed much like ports are. Figure A.7 displays
the ports and parameters section of the Ramp actor code. The Ramp actor inherits
two ports from its parent class, but creates two new members: a parameter (called
init) and a port-parameter (called step).

LIILEEIPIELE LR ETI L L EET P37 P i ii i i iiiiiiieiriitiriiitss
fr77 ports and parameters f117
/** The value produced by the ramp on its first iteration. :
* The default value of this parameter is the integer 0. !
1/ Veecowreowrivowwrwwes 4
. l :
public Parameter init; S SRLSEELEL Ll . Parameter e T !

/** The amount by which the ramp output is incremented on each

* The default value of this parameter is the integer 1.

i A - o oo ot

public PortParameter step; - | PortParameter ;_

Figure A.7: The ports and parameters code of the Ramp actor.

The Ramp actor's init parameter and the step port-parameter must also be
instantiated by the constructor before they will appear. Figure A.8 highlights the
portion of the Ramp actor's constructor code that instantiates the new class
members and sets the type of an existing member, the output port.

326

Appendix A

/== Construct an actor with the given container and name.
= In addition to invoking the base class constructors, construct

the <i>initd{/i> and <i>step</i> parameter and the <{id>step</i>

port. Initialize <i>init<{/i>

to IntToken with value 0, and <i>step</i> to IntToken with value 1.
@param container The container.

@param name The name of this actor.

®exception IllegalActionException If the actor cannot be contained
by the proposed container.

@exception NameDuplicationException If the container already has an
actor with this name.

=/

public Rnnp(CouposxteEntity container, String name)
throws Name ationException, IllegalActionException {

per{container, name);

init = new Parameter(this, "init"):

init.setExpression("0");

step = new PortParameter(this, "step"):

step.setExpression("1");

/7 set the type constraints.
output.setTypeAtLeast (init);
output.setTypeAtleast (step):

_attachTex = » "<svg>\n"

+ "<rect x-\" 30N" y=\"-20\" " + "width=\"60\" height=\"40\" "
+ "style=\"fill:white\"/>\n"
+ "<polygon points=\"-20,10 20,-10 20,10\" "
+ "style=\"fill:grey\"/>\n" + "</svg>\n"):;

_resultArray = new Token[1]:

Figure A.8: Constructing the init parameter and step port-parameter and setting type constraints for
the actor's output port.

The code that instantiates a parameter takes the following form:
paramName = new Parameter (arguments)

For example, the init parameter in Figure A.8 uses:

[1] init = new Parameter (this, "init");
[2] init.setExpression("0");

Line [1] instantiates the init parameter. The first argument (i.e., this) is the
container of the parameter, this actor. The second is the name of the parameter
("init"), which can be any string, but by convention, is the same as the name of the
public variable. Line [2] specifies a default value for the parameter, in this case, 0.

327

Appendix A

A.2.1.4 Actor Icons

Actor icons, which appear on the Workflow canvas as well as in the actor tree, are
assigned via external mappings, and NOT in the actor code. The icons themselves
are SVG (scalable vector graphic) files.

In order to achieve visual consistency among the icons and to limit the number of
icons in use, as well as to classify the icons into families that share a common
function, we ask that you select an existing icon or icon family if possible. For a
complete list of actor icons and their function, please see Section 5.3.1 Actor Icon
Families.

For complete instructions, please see Assigning/Adding Icons in Kepler

A.2.2 Compiling a New Actor

To compile new actors please see the online developer documentation at
https://kepler-project.org/developers and
https://kepler-project.org/developers/teams/build/documentation/developing-a-
hello-world-actor-using-the-kepler-build-system-and-eclipse

A.3 Sharing an Actor: Creating a KAR File

To save an actor and share it with other users, either save the actor as a KAR file (a
Kepler Archive format that allows actors to be easily transported and used), or
upload the actor to the Kepler repository, where it can be shared by the general
public. If the actor is built from a new Java source, the KAR file must include a
dependency on the module where the Java class has been compiled.

A.3.1 The Manifest File

The manifest file (MANIFEST.MF) is a simple text document that helps uniquely
identify an actor. It contains versioning information as well as the location of the
actor's MOML file and its LSIDs (Life Science Identifier)—one for the KAR file,
another for the actor. The manifest also contains information about the actors
source code, when relevant (i.e., when the actor is compiled from new source code).

Each actor must have a unique LSID. The LSIDs of actors in the standard Kepler
library take the form:

328

http://cvs.ecoinformatics.org/cvs/cvsweb.cgi/kepler-docs/user/VizDesign-AddingIcons_kma.doc
https://kepler-project.org/developers
https://kepler-project.org/developers/teams/build/documentation/developing-a-hello-world-actor-using-the-kepler-build-system-and-eclipse
https://kepler-project.org/developers/teams/build/documentation/developing-a-hello-world-actor-using-the-kepler-build-system-and-eclipse

Appendix A

urn:lsid:kepler-project.org:actor:7:1.

In this case, kepler-project.org is acting as the "authority", actor is acting as the
"namespace”, 7 as the "object id", and 1 as the "version". For your own actors, you
might try making up your own namespace to replace "actor" with. For more
information about LSIDs and their syntax, please see:

https://kepler-project.org/developers/teams/framework/kepler-life-science-
identifiers-keplerlsid.

To view Manifest files for existing KAR files right click on the KAR in the Component
Library and choose the “View Manifest” menu item. More information about KAR
files can be found at:

https://kepler-project.org/developers/teams/framework/kepler-archive-kar

A.3.2 The MOML File

MoML is an XML modeling markup language intended for specifying
interconnections of parameterized, hierarchical components—such as actors and
workflows.®3 Each actor has a MOML file that describes it: its ports, parameters,
settings, documentation, semantic type (i.e., where it appears in the actor tree), and
identifier (the LSID).

All MOML files begin with an XML declaration, which specifies the version of XML
being used:

<?xml version="1.0" 2>

The bulk of the MOML file is contained between start and end <entity> tags that
surround a "body" of nested tags describing specific actor properties. People
familiar with XML will recognize the structure. Please note that all tags must be
closed either with an end tag (e.g., <entity>..</entity>) if the tag surrounds
content, or a closing "/>" (e.g.,, <property... />)ifthe tagis empty.

The opening <entity> tag specifies the name and class of the actor's container.

<entity name="SshSession" class="ptolemy.kernel.ComponentEntity">

Inside the <entity> tag are tags that define the specific actor properties and
parameters, such as its LSID, user documentation (which overrides any

63 Edward A. Lee, Stephen Neuendorffer. "MoML — A Modeling Markup Language in XML — Version
0.4". Technical report, University of California at Berkeley, March, 2000.

329

http://kepler-project.org/
https://kepler-project.org/developers/teams/framework/kepler-life-science-identifiers-keplerlsid
https://kepler-project.org/developers/teams/framework/kepler-life-science-identifiers-keplerlsid
https://kepler-project.org/developers/teams/framework/kepler-archive-kar

Appendix A

documentation in the Java source code), ports, parameters, and location in the actor
tree.

Please see the Ptolemy documentation for a complete guide the syntax and
components of a MOML file.

330

http://ptolemy.eecs.berkeley.edu/publications/papers/00/moml/moml_erl_memo.pdf

Appendix B

Appendix B: Modules

Kepler is broken up into units of software functionality known as modules. Modules
have three primary purposes:

e Group related core Kepler software functionality together in logical units.

e Enable addition functionality to be easily added to Kepler.

e Enable existing Kepler functionality to be easily substituted by different
functionality.

What you need to know about modules differs based on whether you are primarily a
scientific user, a developer, or both. We will start with the user perspective.

B.1 The Module Manager

The module manager is the primary means by which users will interact with
modules. It can be accessed from standalone command ‘Module Manager’ or the file
menu by clicking Tools > Module Manager... There are two tabs in the module
manager.

[Current Suite Available Suites and Modules |

Current Suite: kepler

kepler [
outreach
apple-extensions

r

loader

actors

directors

opendap

dataturbine

ecogrid
authentication-gui

gui
module-manager-gui
authentication
repository '
job

io

ssh

data-handling

SMs
component-library

uril -

(" save Suite) [Load Suite)

331

Appendix B

First, there is the Current Suite tab. A suite is simply a list of modules where the
order is significant. The current suite is the list of modules that make up the instance
of Kepler you are currently running. Besides providing information on the current
suite, the current suite tab has two functions: (1) saving the current suite to file and
(2) loading a new suite from file. The intent is to enable you to share your
environment with colleagues. If you are working in a particular environment and
you want to allow a colleague to synchronize their environment with yours, you
could simply save your current suite, email it or otherwise transmit the file to them,
and when they load it they would end up working in the same environment,
including the download of any modules if necessary. Please note that if you load a
preexisting suite, Kepler will restart.

[Current Suite Available Suites and Modules 1 L3

Available Suites: Selected Modules:

comad-exp-1.0 [
comad-exp-2.1
configuration-manager-2.2
kepler-2.0

kepler-2.1

kepler-2.2

koogle-1.0

kuration-1.0 v

["] Show suite patches. L J

Available Modules: \ S

actors-2.0.0 -
actors-2.1.0 ~
actors-2.2.0
apple-extensions-2.0.0
apple-extensions-2.1.0
authentication-2.0.0

authentication-2.1.0 1 (" Check for Patches Now)
authentication-2.2.0 v “ J

z Automatically check for patches on startup.

[] Show test releases. hollback krepler

A

Apply and Restart

The second tab is the Available Suites and Modules panel. Here there are three lists,
a list of all available suites, all available modules, and selected suites and modules.
Only published modules and suites are displayed. Developers working with
unpublished modules are expected to use the build system.

332

Appendix B

The use of this panel is relatively simple. A typical user will simply select one of the
available suites and then click “Apply and Restart”.

Note: With Kepler 2.1 and earlier, you must be running Kepler with administrative
privileges in order to restart.

The capabilities here are more advanced however. For very advanced users, it is
possible to mix and match suites and modules. However, mixing and matching
modules and suites, as opposed to selecting a single suite should not be done by
casual users unless specifically instructed since such mixing and matching can have
unpredictable consequences. For more advanced users and developers, the selected
modules list is essentially like modules.txt, which is described in the developer
documentation on the Kepler website.

B.2 Developing Modules

If you want to add non-actor functionality to Kepler, you will need to develop your
own modules. To learn how to do that, please refer to the Build System Instructions
at the Kepler website (https://dev.kepler-project.org/developers).

Click on the “Build System Instructions” link and then the “Making Your Own
Modules” link in the table of contents.

333

https://dev.kepler-project.org/developers

Appendix C

Appendix C: Using R in Kepler

The Kepler library contains a number of useful actors that interface with the R
environment, accessing its powerful statistical and data processing tools and

integrating that functionality into workflows.

Kepler's RExpression actor inserts R commands and
scripts into workflows, making it easy to use the data RExpression
manipulation and statistical functions of R. In addition, a
number of customized R actors designed to perform
specific functions (creating a bar or box plot, for
example) are included in the Kepler library. A search for

"RExpression” in the Components tab will return all R- The RExpression actor icon

related actors.

To implement any of the RExpression actors, R must be installed on the computer

running the Kepler application.

C.1lInstalling R

R can be freely downloaded from links on the R Project web site (http://www.r-
project.org). Follow the instructions provided for installation. In addition (under
the Windows operating system), the R 'bin' directory must be added to the PATH
variable on the host computer. To test if the installation is correct, open a
command/terminal window and type the command 'R'. The command should start
the R environment and alert the user that R has been started.

C.2 A Brief Overview of R

R is open source software for statistical computing, data manipulation, and
graphics. Based on work originally carried out at Bell Labs, R is part of the
GNU project. The software provides a wide variety of statistical (linear and
nonlinear modeling, classical statistical tests, time-series analysis,
classification, clustering, etc) and graphical techniques (Figure C.1), and is
highly extensible.t%

% R Project website, http://www.r-project.org/

334

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/#in_browser
http://www.r-project.org/#in_browser
http://www.r-project.org/

Appendix C

N hed Boxpicts Bagar Andlerson's s Data
"2

O | ﬁ = ‘
e VLR

.......

{C) R Foundation, from http/iwwyi.r-project.org e e S S
Figure C.1: Examples of graphics generated with R

The R language has many similarities to the Kepler expression language, with the
added advantage that many detailed statistical operations and data manipulation
routines already exist in R. In addition to performing a wide variety of statistical
tests and analyses, R can create sophisticated graphic displays with only a few lines
of script (Figure C.2).

335

Appendix C

Edit parameters for RExpression

l)
\&/ R function or script:

K et paits R Display
e Tooks e
- secsat’
1> pag(fiicnane =
§> T_AIR <- (15,0,
3> PR <~ c(99, 99,
i- BARD <= €(95).4, 93
‘- af <~ data.frese (T _ALR
1> susmacy(az)
T_AIR
Mim. : 8.90
18t O

Redian
Mean
Jrd

Max. 134.40
'- palra(dL)

Hf <- data.frame(T_AIR, RH, BARO)
swawary (df)
pairs (df)

Ci/documants and Settingn/Kirsten .m:n'! ¢ RExpression prg ..-..AE!
o B RLENEB0 plrels, B0 225K

@ 0 20 0
i I : 1

LExpi
® W w0 W
,‘ ’.‘_' "‘-‘.\, %
o . - - - e
. ‘ e - - 2
T_AIR g . J ‘\‘*
_ o ' > &
? Y ®s
. RH
oY i
s ~. 4| BARO [,
¢ N *~ ® x
* n -
L) | - i I'-—
k] 54) -
10 5 W 5 o % 254

Figure C.2. A three-line R script can read a data table, plot all combinations of column data, and

summarize the data.

The R language emphasizes operations on “whole objects” (e.g., vectors, matrices,
and tables) rather than on individual elements. This emphasis eliminates many
explicit looping statements. We will take a closer look at R data objects in the next

section.

R functions, which are often the building blocks of R-scripts, operate on the contents
of data objects. See Section 2.2 for more information.

C.2.1 Data Objects

R objects are specialized structures that facilitate high-level manipulation of
information. All R objects are derived from several basic types. The most basic kind
of R data object is the vector, which is a collection of elements that all have the same
type (mode). For example, {1,2,3,4,5} is a vector with a length of five and a mode of
"numeric." Other modes are complex, logical, character, or raw. A second basic R

336

Appendix C

data object is the list. A list is also a collection of elements, but its elements may be
of different types (in fact, each element can be any kind of R object, including
another list).

Numerous other types of objects are derived from these basic types. Some examples
of objects commonly used during data analysis include:

Factor A special vector storing discrete categorical values

Array A vector with a dimension attribute

Matrix An array with two or more dimensions

Data Frame A data table (formally, a list of vectors all of the same length)

Table C.1: R data objects

For more information about R data objects, please see An Introduction to R by W.N.
Venables, D.M. Smith and the R Development Core Team. In Section 4, we will look at
examples of several of these data objects in Kepler/R workflows.

C.2.2 Functions

An R function is a self-contained routine that accepts input arguments and returns a
single R object. The base R system includes many useful functions that can be called
interactively or via scripts. For example, the read.csv () function reads a comma-
delimited ASCII file and creates a data frame object from it; write.table ()
writes a data frame object to an ACSII text file; and the hist () function produces a
histogram. For a useful list of R functions, please see These are a Few of My Favorite

R Things.

A rich set of additional functionality is available via freely available add-on packages
contributed by the R user community. The primary source of such packages is the
Comprehensive R Archive Network. Users can also write new functions and modify
existing functions as needed. For more information about writing new functions,
please see An Introduction to R by W.N. Venables, D.M. Smith and the R
Development Core Team.

C.2.3 Further Resources

Please see the NCEAS R Programming Language Resource Center for a collection of
useful R resources including information describing specific R add-on packages,
advanced geospatial and geostatistical analysis methods that incorporate R, a list of
questions (with answers) to common introductory R questions, information about R
spatial analysis tools and many new R packages, and dozens of R tutorials.

337

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.nceas.ucsb.edu/files/scicomp/Dloads/RCourse/PeterAdlerRCheatSheet.pdf
http://www.nceas.ucsb.edu/files/scicomp/Dloads/RCourse/PeterAdlerRCheatSheet.pdf
http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.nceas.ucsb.edu/scicomp/rtutorialslatest

Appendix C

For a short reference to R functions see The R Reference Card by Tom Short and for
many tips on R usage, see Paul Johnson’s R tips page.

C.3 The RExpression Actor

To get started using R in Kepler, drag-and-drop the RExpression actor onto the
Workflow canvas (Figure C.3). A search for "RExpression” in the Components tab
will return all R-related actors. The RExpression actor is under the ‘General Purpose’
heading. Note that all R actors are represented by the same icon: a teal rectangle
with a blue square/white R in the bottom left corner. Once the RExpression actor is
on the Workflow canvas, it can be customized with additional ports and a user-
defined R-script.

338

http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Appendix C

K/ Unnamed BEx]
Eie Edit View Workflow Tooks Wﬂueb
Qe QliIPI@wmpd o) e
Components | Data 3 A
Search
RExpression
[[] Search reposkory
[search || Reset |
w ;=z’$ @ RExpression
.Suuerplot
=- @ statistical Analysis ‘
= @ Bivariate Analysis i
B uineartodel
= @ Correlation Analysis
= @ Kendsll Correlat
B corretation
= @ Pearson Correle
B Correlation |y
(<] | 3]
33 resuks found.
RExpression
!Y:
< [
J

C.3.1 Inputs

Figure C.3: The RExpression actor.

The RExpression actor is customized in two basic ways: via new ports, which can
receive data to be processed by the R-script; or via parameters, which are used to
specify an R-script and settings that relate to the R workspace (the working
directory, graphics format, etc). In the next sections, we will look more closely at

both ports and parameters.

339

Appendix C

C.3.1.1 Input Ports

Input ports can (and very often must) be added to the RExpression actor to receive
data that will be processed by the R-script. To add an input port, right-click the
RExpression actor and select Configure Ports from the drop-down menu (Figure C.4).

L S
| £ Configure ports for RExpression E]@
Marne Input | Qw.,. | Mok, Type Direction Show Marmne Hide Units
graphicsFileMame | [] [] DEFALLT Fi F
oukput [] [| DEFALLT Fl Fl

(e] (oo

Figure C.4: Configuring the ports of the RExpression actor. Ports that cannot be modified are noted with a
pink highlight.

To add a new port, click the Add button and then customize the new port. Every port
must have a name, which can be customized by double-clicking the field in the Name
column and typing a name. The port name will be used as the name of the
corresponding R data object. For example, if an input port called values accepts a
data array, the R-script will reference the array data object by the name values.

When input ports are configured as multiports, all tokens received on that multiport
are added to a list object in R. The list name corresponds to the name of the R
actor's input port. The list order is determined by the order in which connections
are added to the multiport. For an example, please see Section 4.1.1.5

The RExpression actor in Figure C.5 has two user-defined input ports named aaa
and bbb. Two Expression actors pass arrays to these ports, and the RExpression
actor constructs R vectors (aaa and bbb) from this input by applying the c ()
function: aaa is {1,2,3} and bbb is {4,5,6}, the values passed through the
correspondingly named ports. The R script has been set to aaa+bbb, and the result
is the sum of the R vectors: 57 9.

340

Expression2

RExpression

> asa+bbb
[1] 579
>
>

Appendix C
K Display x|
2 Tooks
SDF Director B o —
> serwd('C:/Document2 and Settings/Kir ™
> png(filename = 'Kirstenll.png',width
> aaa <- ¢(1, 2, 3)
Expression > bbb <- c{4, S, 6)

Figure C.5: Two user-defined ports (aaa and bbb) have been added to an RExpression actor.

The Display window in Figure 5 contains the text output that R generates. Additional
output ports can be added to output R-script results.

C.3.1.2 Parameters (the R-script and more)

The R script or function that the RExpression actor runs is specified by the actor
parameters. To view or change the R script, double-click the actor.

-

Edit parameters for RExpression

\:.,‘/ R function or script:

la <- ¢(1,2,3,5)

plotia)
R working directory: C:\Documents and Settings|Kirsten).kepler\
Save or nok: “-no-save .
Graphics Format: png o
Graphics Output:
Autamatically display graphics: O
Number of X pixels in image: 480
Number of Y pixels in image: 480
class: org.ecoinformatics.seek, R, RExpression
semanticType000: urn:lsid:localhost:onto: 1:1#MathOperationActor
semanticTypell1: urn:lsid:localhost 1onto:2:1 #GeneralPurpose
firingsPerlteration: 1
[Commi] [Add] r Remove] [Restore Defadts] [Preferences] [Help] [Cancel]

Figure C.6: The default parameters of the RExpression actor.

341

Appendix C

The default R script, shown in Figure C.6 creates and saves a plot of an array of
values {1,2,3,5}.To use another R-script, simply replace the default script with the
desired one. The additional RExpression parameters are used to customize the
behavior of the actor (Table C.2).

RExpression Parameter use

parameter

directory The 'R" working directory (the Kepler cache by default).
Save or not Specify whether or not to save the R workspace when R is

closed; set to '--save' to retrieve the workspace later in a
workflow with another R actor.

Graphics Format |The graphics output format. Currently the actor supports
either *.pdf or *.png.

Graphics Output (Specify whether or not to send graphics to a graphics
output port. By default, the actor will send data to a
graphics output port.

Automatically Select to automatically display the plot once the actor has
display graphics |generated it. Note that if this option is selected, the output
file will always be in PDF format, regardless of the value
selected as the Graphics Format setting.

Number of X||The width of the output graphic in pixels.
pixels in image

Number of Y||The height of the output graphic in pixels.
pixels in image

Table C.2: RExpression actor parameters and their use.

C.3.2 Outputs

By default, the RExpression actor creates an output port for a graphical
representation of results as well a copy of the text output that R generates. Users
can add additional output ports for outputting results generated by the script.

C.3.2.1 R-Text

The R text consists of the actor's communications with R to run the R function or
script as well as the values and statistical outputs. Figure C.7 displays a very simple
R workflow that shows the text and graphical display of an RExpression actor with
its default settings.

342

Appendix C

SDF Director

ImageJ

K/ ..Display Q@l
Fle Took Help

> setwd('C:/Docunents and Settings/Kir®

RExpression

Display
> png(filename = ‘'Kirsten7.png',width
> a<- ¢(1,2,3,9)
> plot(a)
>
| Kirsten7 e =
[§50x400 pleels, 5-DIt, 225K
v
< | >
W - o

10 15 20 25 30 35 40

Figure C.7: The default settings of the RExpression actor. By default, the actor creates a plot of the values
(1,2,3,5).

The first two lines in the text display window in the upper right corner of Figure 7
(‘setwd..” and ‘png..’) are setup commands for R that are automatically added by
the actor. The last two lines of the display are exactly what would appear if one
were running the R system from the command line:

a <-c(1,2,3,5)
plot (a)

To "hide" the R-text output, simply leave the port unconnected.

C.3.2.2 Graphical Output

343

Appendix C

Some R functions ‘draw’ to a graphical display device. The RExpression actor
automatically creates a display file and sends the name of this file to the
graphicsFileName port for use by a display actor. (If no functions that create
graphics are called this file will be blank.) Figure C.8 shows a workflow that uses an
RExpression actor to read two arrays, add them, and output a bar plot of the result.
The R-script used by the RExpression actor consists of two lines:

ccc <- aaa + bbb
barplot (ccc)

SDF Director

Expression

f— ——
| Ksent png '._-.JQ.E"

[T30u 130 pocels, EDE, 7355

® - K Dlsplay @@
Fle Took Help

setwd('C:/Documents and Settings/Kir D
png(filename = ‘KirstenS.png',width
aaa <- ¢{1, 2, 3)

bbb <- c{(4, S, 6)

cce <- aaa + bbb

bharplot (cce)

VVVVYVVVY

~
v

Figure C.8: An example of an RExpression workflow used to create a barplot.

344

Appendix C

In the above workflow, the barplot is saved as a .png file (the default). The RExpression
actor can also generate and save a .pdf file--set the desired output type with the
GraphicsFormat parameter. The dimensions of the graphic can be customized with
the NumberOfXPixelsInImage and NumberOfYPixelsInImage parameters.
By default, the graphic is 480x480 pixels. Generated graphics files are saved to the R
working directory, which by default is the Kepler cache (e.g., C:\Documents and
Settings\<UserName>\.kepler\).

The RExpression actor can also be set to display graphics automatically. Select the
AutomaticallyDisplayGraphics parameter to open graphical results in your
system's default viewing application. If this parameter is selected, the output file will
always be in PDF format, regardless of the value of the GraphicsFormat parameter,
as users are more likely to have a PDF viewing application than a PNG one.

C.3.2.3 User-Defined Output

To output results generated by the R-script (in addition to a graphic and R-text), add
additional output ports to the RExpression actor. The RExpression actor in Figure C.9
has been modified with a user-defined output port to output the sum of two vectors
(ccc). The R-script used by the RExpression actor is:

ccc <- aaa t+ bbb
barplot (ccc)

345

Appendix C

SOF Director

ImageJ

Expression

R-tex

> ann .
> bbb <- G(4. 5, 6)
I l I > 00C <=~ wam + bbb
yarp Lot (000)

RExpression

Expression2

>
0 o6
Sum of Arrays ‘ S ‘-:-“—D-J
| e Took Heb

ks, 7. @

Figure C.9: Adding an output port (ccc) to the RExpression actor.

The output port name must exactly match the name of the corresponding R data
object. In the workflow in Figure C.9, the R-script defines the sum of the vectors as
ccc. The output port called ccc broadcasts that value ({5, 7, 9}). Note: When
an output port is configured as a multiport, all of the actors connected to that
multiport are sent the token.

C.4 Handling Data

R can process a number of different types of data objects (vectors, data frames, etc).
How those objects are best input to the RExpression actor depends to some extent
on the format of the data itself. Does the data set use metadata? Is it contained in an
Excel spreadsheet? Or is it a simple array of numbers? In the next sections, we will
look at examples that demonstrate various techniques for inputting data to an
RExpression actor. We will also look at how the RExpression outputs different types
of data objects.

C.4.1 Inputting Data

346

Appendix C

Whether you are working with data arrays, records, R data frames, or local data sets
saved as tab- or comma-delimited text files, data can be input into an RExpression
actor via user-defined input ports. If the data is described by Ecological Metadata
Language (EML), an EMLZDataset actor can be used to format the data
appropriately.

C.4.1.1 EML (Ecological Metadata Language) Data Sets

Datasets that use EML can be read and output in a variety of ways by the
EMLZDataset actor. In the next few examples, we will look at a meteorological data
set (Datos Meteorologicos) described by EML and stored on the EarthGrid. To
download and explore this dataset, select the Data tab and search for "Datos
Meteorologicos" (or a portion of the name, such as 'Datos'). When the data are
dragged onto the Workflow canvas, Kepler will create an EMLZDataset actor (Figure
C.10) named after the dataset and used to access and output the data in a variety of
different formats.

’K Unnamed ::f'-.i‘
fle ESt Yew Workfow Jook Window Heb

QeEetIriiRYy sy e 000]

Components | Data o 2.

&

Search

Datos Meteorologuos

Search Reset |

[sources |

Datos Metaorologicos Datws porologicos

11 resuks retumed.
. 1 v‘
[< >

[]

Figure C.10: An EML dataset (Datos Meteorologicos).

347

Appendix C

By default, the EMLZ2Dataset actor downloads the data to the Kepler cache (if the
data is not already available there) and creates an output port for each column of
data. Mouse over each port to see the name and type of the data output.

To learn more about the data set, right-click the actor and select Get Metadata from
the drop-down menu. The metadata contains information about the data (the owner
and structure) as well as the type and measurement of the data included in the set.

The EMLZDataset actor can be customized to output data in a variety of ways: as
field, table, row, byte-array, un-compressed file name, cache file name, column
vector, or column-based record. We'll look at examples of how these different
formats can be used with the RExpression actor in the next few sections.

C.4.1.1.1 Example One: Selecting and Using Columns of Data (Column Vectors)

The workflow discussed in this section is found at
KeplerData/workflows/module/r-2.X.Y/demos/R/eml-pairs-R.xml

The workflow in Figure C.11 uses an R-script to create a pairs graph of three
columns of data (air temperature, relative humidity, and barometric pressure) from
a meteorological data set described by EML. The data are input to the RExpression
actor as arrays of column values (column vectors).

348

Appendix C

.Il'uwtal-..q4 ‘_"_—_-_U
[PR A
T_AIR ! j ; 4.\:
- Al TN B | | [T ea——
SDF Director e S RM S
" ¥
".. ’] BARO
ImageJ 4- : - :
Datos MzeorolngicosQ RExpression
>
Display
 — SE%)
!
ks

Figure C.11: Using column vectors with the RExpression actor.

The RExpression actor in Figure C.11 has three user-defined input ports: T_AIR, RH,
and BARO, which receive the temperature, relative humidity, and barometric
pressure data, respectively. These data are passed in the form of column vectors. To
output the data in this format, double-click the Datos Meteorologicos2 actor and
select As Column Vector as the value of the Data Output Format
parameter (Figure C.12).

349

Appendix C

-
Edit parameters for Datos Meteorologicos2 @
b d :
2) o i
Selected Entity: Ciaboc 3‘% wl
@::;‘;; s Column Vector) v
File Exte v — — 7
Check For latest version: O
recordd; tao. 1.1
endpoink: hittp: /fecogrid.ecoinformatics. org/knbfservices/EcoGridQuery
namespace! eml:f/ecoinformatics.orgfeml-2,0.0
firingsPerIteration: 1
L Commi] [Add] [Remove] [Res!ore Defaults] [Preferences] [Help] [Cancel]

Figure C.12: Setting As Column Vector asthe data output format.

The RExpression actor uses a three-line R-script to combine the vectors into a data
frame (a collection of R data objects), summarize the table, and create a pairs-graph
of the values:

df <- data.frame (T AIR, RH, BARO)
summary (df)
pairs (df)

An Image] actor displays the graph (a .png file saved to the R working directory),
and a Display actor displays the text output by R.

C.4.1.1.2 Example Two: Selecting and Using an Entire Data Set (Column-Based
Records)

The workflow discussed in this section is at KeplerData/workflows/module/r-
2.X.Y/demos/R/eml_Table_as_Record.xml

The workflow in Figure C.13 uses an R-script to create a pairs graph of a column-
based record that contains all columns of data (date, time, air temperature, relative
humidity, dew point, barometric pressure, wind direction, wind speed, rainfall, solar
radiation, and solar radiation accumulation) from a meteorological data set
described by EML. The data are fed to the RExpression actor as a single column-
based record. This data format is specified by the EMLZDataset actor (Datos
MeteorologicosZ2).

350

Appendix C

— e
SENTAGEYNED,
E-a N EEEEE
NWC ARG ARE

EEPILNRYARE
SDF Director LmEI! rLEADE
YtERINPHARSO
SRS SRE
NEZTOAEIN R
ImageJ CEERITHANSEAEACIE

P 3T VR R | PR WS ER A R
Datos Meteorologicos2 ” : : s :

> RExpression
Display
P el _Yabke_an Wncon @0 b play = ,—’ZU‘

e Ten e

k
| =
|

| 5
|

LT

Figure C.13: Using column-based records with the RExpression actor.

The RExpression actor in Figure C.13 has a single user-defined input port (df),
which receives an entire data set as a column-based record that is translated into an
R data frame object. Double-click the Datos MeteorologicosZ actor and select As
ColumnBased Record as the value of the Data Output Format parameter
to output the data in the required format (Figure C.14).

A column-based record consists of named elements and their values. In Kepler,
records are specified between curly braces. For example, {BARO = {953.4, 953.8,
954.0}, DATE={"01/01/01","01/01/01","01/01/01"}, DEW = {14.5,12.8,12.8 }} is
arecord with three elements named BARO, DATE, and DEW.

351

Appendix C

Edit parameters for Datos Meteorologicos2

o e
Data File: Browse I
Selected Entity: Datos Meteorologcos "1

ata Output Format: As ComnBased Record__D v

Fi €]
Check for latest version: 0
recordid: tao.1.1
endpoint: http:/jecogrid.ecoinformatics. orgiknbfservices/EcoGridQuery
namespace; eml:{fecoinformatics.orgfeml-2,0.0

[Commik] [Add] [Remaove] [Restore Defaults] [Preferences] [Help] [Cancel]

Figure C.14: Setting As ColumnBased Record as the output format for the data.

The RExpression actor uses a two-line R-script to created a pairs graph of the data
and summarize it:

pairs (df)
summary (df)

An Image] actor displays the graph (a .png file saved to the R working directory),
and a Display actor displays the text output by R.

C.4.1.1.3 Example Three: Selecting and Using a Cached Dataset (read.table
function)

The workflow discussed in this section is found at
KeplerData/workflows/module/r-2.X.Y/demos/R/dataFrame_R.xml

The workflow in Figure C.15 uses an R-script to create a pairs graph of a
meteorological data set described by EML that is saved to the local cache. The
location of the cached data set is fed to an RExpression actor, which reads the file
and uses the read.table function to parse the data before creating the pairs graph.

352

Appendix C

Ml-.-mﬂi!’ | %)
SDF Director s . o ® s 0
HEEHEREEIEE:
NSRS NE =
MWEMNZNER DO
Datos Meteorologicos M REAPMRREINS

RExpression HEAEANAELET
e S A Al (T R
HEHBEHBHHEHEHEHE.
R AT A e 3 OF <) AR1 IRERC
PRANRESE2E.

Display

Figure C.15: Using column-based records with the RExpression actor.

The RExpression actor in Figure C.15 has a single user-defined input port (infile),

which receives the location of the cached data set (e.g, C:\Documents and
Settings\username\.kepler\cache\cachedatal\urn.lsid.localhost.7a976669.0

.0). To output data in this format, double-click the Datos Meteorologicos2 actor and
select As Cache File Name as the value of the Data Output Format
parameter.

The RExpression actor uses an R-script to read the data file, create a data frame
object using R's read.table function, and then create a pairs graph from it.

datafile <- infile

df <- read.table(datafile, sep=",", header=TRUE)
pairs (df)

df

An Image] actor displays the graph (a .png file saved to the R working directory),
and a Display actor displays the text output by R. Note that the data frame is also
displayed in the R-text output.

353

http://cran.r-project.org/doc/manuals/R-intro.html#The-read_002etable_0028_0029-function

Appendix C

C.4.1.1.4 Example Four: Using Data Sequences

The workflow discussed in this section is found at
KeplerData/workflows/module/r-2.X.Y/demos/R/emlToRecord_R.xml

The workflow in Figure C.16 uses an R-script to create a pairs graph of several
columns of meteorological data (barometric pressure, relative humidity, and air
temperature) described by EML. The data are originally output as three sequences
of values, which are converted to Kepler arrays and then combined into a single
record of arrays. The data conversion is handled by three SequenceToArray actors
and one RecordAssembler, which reads the three data arrays and combines them
into a single record that is translated into an R data frame.

F Wliperiint pou BN} %
SDF Director i i \ }
m BARO | B, il
Sequence To Arrayd B e — . — ._....‘

ogicos
Sequence To Aray

Sequence To Array

Figure C.16: A workflow that converts three sequences of data to three arrays, and then combines
the arrays into a record input to the RExpression actor.

The RExpression actor in Figure C.16 has a single user-defined input port (df),
which receives the record of arrays created by the upstream Kepler actors.

The Datos MeteorologicosZ actor is configured to output data As Field (whichis
the default value of the Data Output Format parameter). The output
sequences are read by SequenceToArray actors. Note that each SequenceToArray
actor must be customized to create and output an array with a length that matches
the number of data records in the data set. Since the Datos Meteorologicos2 contains

354

Appendix C

100 data records, the arrayLength parameter for each of the three
SequenceToArray actors must be set to 100. (Figure C.17)

2 >
class: ptolemy.domains.sdf ib, SequenceToArray
semanticType000: umn:lsid:localhost :onto: 1:1#ArrayActor
semanticTypel11: urnilsid:localhost:onto: 1:1#Conversionactor]
firingsPerTter ation: 1

(_Commt |[add][Remove | [RestoreDefauks] | Preferences |[hep |[cCoxel |

Figure C.17: Specify the length of the array to be created by the SequenceToArray actor (i.e., the number
of records in the data set).

The number of records in the data set is noted in the metadata. Right-click the Datos
Meteorologicos2 actor and select Get Metadata to view this information (Figure
C.18).

read blic

Mr. Rodrigo Torrens

Name: Datos Meteorologicos

iption: Dtos Estacion meteorologica La Hechicera para e? 2001
Physical Structure Description
Object Name: sample.dat
Size: 163660 bytes =
Character ASC

Encoding:

Number of
Header Lines:
Record
Delimiter:
Maximum L
Record Length: jpokin
Simple Field
Delimited: Delimeter.

%:bef Of Records: 100 i

1

n
Text Format:

Type ., Missing
Attribute Column Measurement Accuracy Accuracy
Reoe R issel Definition of Type Measurement Domain Value Report Assessme maoragoIotth
Value Code
Date of Format MMWDDAY
OATE DATE . uection U9 dstelime ot
Time of Format HHMM
TRE TNE . onection NG detime L g

Al la

i J
Figure C.18: The number of data records is noted in the data set metadata.

355

Appendix C

The RExpression actor uses a two-line R-script to create a pairs graph and
summarize the data:

pairs (df)
summary (df)

An Image] actor displays the graph (a .png file saved to the R working directory),
and a Display actor displays the text output by R.

C.4.1.1.5 Example Five: Using Ports Configured as Multiports

The UnionAll RExpression actor in Figure C.19 is configured with a multiport input
and output port. All tokens received on the multiport are added to a list object by
the UnionAll R actor and then output to two R actors (Pairs and Summarize) for
further processing. Note that the multiport output port broadcast the R data to all of
the actors it is connected to. The workflow outputs a pairs graph of the data and a
summary table.

[wos v ™)

SN ol BTG

HENT@GRUNEE,

d LI LI L e

BN W 1 /A P A

e HE R EE

P NEYEEE.

ROl -l Iolal e <14

LERINEC RS,

R itport dutsivamwma oy o MR IS ESHSNE

R : NREZIME NGB

R st CEERIAANSACE
_— : mem ARl EEEMEE:

A=~

Datos Meteorologicos

>

Union Al

Datos Meteorologichs2

Figure C.19: Using an input port configured as a multiport.

356

Appendix C

To add and configure a multiport, right-click the actor and select Configure Ports
from the drop-down menu. Name the port, select its direction (input or output) and
then check the Multiport option (Figure C.20).

.+ Configure ports for Union All g@_]
Name Input Ou... Muki... Type Direction Show Name Hide Units
aphicsFileName [| | DEFALLT]]
: - aL L DEFAULT 0]
Tecords 4101 8 | > DEFAULT 0]
IRecords - s DEFALT | 0O | [
Coenn : [Help] [Cancel]

Figure C.20: Using an input port configured as a multiport.

The UnionAll actor receives two data sets through its records multiport. These
data are output by two EML actors set to output data in "As column based record"
format. The RExpression actor creates a dataframe from each received token and,
because the data are received through a multiport, adds the dataframes to an R list
object. The UnionAll actor uses the following R-script to concatenate the list of
received dataframes into a single dataframe:

allRecords = do.call("rbind", records)

The allRecords dataframe is output by the UnionAll actor's allRecords
multiport output port, which is connected to two downstream R actors: Pairs and
Summarize. The multiport output port broadcast the R data to all of the actors it is
connected to, so there is no need to use a relation.

C.4.1.2 Non-EML Data Sets

Data that do not use metadata—Excel spread sheets saved as text files, for example,
or the values of an Expression or Constant actor--can also be used by the
RExpression actor. In the next sections, we will look at several examples.

C.4.1.2.1 Example Six: Local Text-Based Data Sets (Selecting an Entire Data Set)

The workflow discussed in this section is found at
KeplerData/workflows/module/r-2.X.Y/demos/R/localFile_to_dataFrame_R.xml

The workflow in Figure C.21 uses an R-script to (1) read a local text file containing
comma-delimited data, (2) create an R data frame with the data, (3) create a pairs
graph of the data set, and (4) summarize the data. The location of the data set is
input to the RExpression actor by an Expression actor named Path to local file.

357

Appendix C

file:/Users/barseghian/KeplerData/wor. . .1/demos/R/localFile_to_dataFrame_R.xml

MYV IE A ICIEIERS

I Components Data Outline ! » [Workflow |

Search Components

Q (" search)
(_Search)
Advanced Sources Cancel
|\ Sources)

SDF Director

Image)

|"All Ontologies and Folders <] Path to local file
property("r.workflowdir")+"demos /R /sample.dat”

RExpression

» E Components
P Tr—

Display
RExpression-1.png

800
480x480 pixels; 8-bit; 225K

BOO _localFile_to_dataFrame_R.Display

4 01/04/01 21:00 14.099 13.4953.81151.0 0 O 0

5 01/04/01 22:00 13.09912.3954.1 9920 0 0 240

6 01/04/01 23:00 13.59912.8953.9 720.8 0 0 360 r
7 01/05/01 00:00 13.699 12.8953.910016 0 O 0

— 8 01/05/01 01:00 13.599 12.8 954.0 212 0.1 0 120
ﬂ%f;'l A ﬁ E

ol

0
E I:D . g 9 01/05/01 02:00 13.199 12.8954.01001.0 O 0 480)
00 01/05/0103:00 11.09911.7954.3 9722 0 0 0 y

Ew T SERNEE]

o200

)

) 4>

L

Figure C.21: Using local data sets that do not use metadata with the REXxpression actor.

The RExpression actor in Figure C.21 has a single user-defined input port (infile),
which receives the location of the local data set:
property ("r.workflowdir")+"demos/R/sample.dat". The expression
'property ("r.workflowdir")' returns the path to the R module’s workflow
area. Note the use of '/' rather than '\' in the expression, even on Windows
platform.

The RExpression actor uses an R-script to read the data file, create a data frame
object using R's read.table function, and then a pairs graph of the data set:

datafile <- infile
df <- read.table(datafile, sep=",", header=TRUE)

pairs (df)
df

An Image] actor is used to display the pairs graph (a .png file saved to the R working
directory), and a Display actor displays the text output by R.

C.4.1.2.2 Example Seven: Using Kepler Records

358

http://rwiki.sciviews.org/doku.php?id=rdoc:base:read.table

Appendix C

The workflow discussed in this section is found at
KeplerData/workflows/module/r-2.X.Y/demos/R/RecordToDataframe-R.xml

The workflow in Figure C.22 uses an R-script to read and display a record originally
specified by an Expression actor. In this case, the record represents a table. The
RExpression actor will automatically create an R data frame from the record,
provided that all the items in the record are arrays of the same length.

| KI' RecordToDataframe R Display =Ja&d|
He Took Heb -]
> b <= cl{'aa', 'aa', "¥xx') £
> record <~ data,freme (a.b)
> record
SDF Director .
11aa
2 2 aa
3 S xx
v
>
RExpression
Expression
| {a={1,2,5).b="aa" "aa",")} Display

Figure C.22: Using a record specified by an Expression actor with the RExpression actor.

The RExpression actor in Figure C.22 has a single user-defined input port (record),
which receives the record data. The record specified by the Expression actor
contains two named items, 'a’' and 'b'. Each item is an array with three values, {1,2,5}

and {"aa","aa","xx"}, respectively.

The RExpression actor uses an R-script to return the data frame object created by
the actor. A Display actor displays the text output by R.

C.4.1.2.3 Example Eight: Using the ReadTable Actor with Local Text-Based Data
Sets

The workflow discussed in this section is found at
KeplerData/workflows/module/r-2.X.Y/demos/R/ReadTable.xml

The workflow in Figure C.23 uses a ReadTable actor to read a local, tab-delimited
data set that has a 'spreadsheet-like' tabular format. The ReadTable actor creates an
R data frame object from the data set and passes it to a second RExpression actor,
which extracts the species and species-count information from the data set and
creates a box plot of the data. The workflow uses an Expression actor (Data File
Name) and two Constant actors (Separator and header) to pass arguments to the

359

Appendix C

ReadTable actor: the name of the data set, the separator used by the data set, and a
header, respectively.

[T Rrprewintt pog o
WL paels B2 il
] T X ‘
2] ——— = '
Crossosyeg L0 Ceghscsis Mo o J HaTe
K ReadTavhe Dplay - [0 54
A [t Tk teb ! N
§ 0 2
639]
é38 o
SDF Director 439 1
440 o
datafrane <« d4f
> patca(df) 0
. Display ImageJ
| -
1< 31
Data File Name
I property("KEPLER")+"/demos/R/mollusc_abundance.bd"
Separator
%""} RExpression & 3
header isplay2
; o3
(RPReeaTebaDapuy2 /o3|
Bl Tock ke
> secwd('Ci/Documents and Seccings/Kirsten/.kepler/') (-]
> pngifilename = 'RExpression2l.png’',vidth = 960, height = 480, pointsize = 12,
> drfi <« read.table(file~'ReadTablel.txe’)
> species <~ dfif,7]
> comnt <- dfl(,8)
> plot(species,ccont)
v
< >

Figure C.23: Using the ReadTable actor to process a local tab-delimited data set.

The ReadTable actor has five input ports (fileName, header, separator,
nrows, fill). The fileName port receives the location of the data set; the
separator port accepts the delimiter (by default, any white space, such as a space
or tab); the header is set to either TRUE (the default) or FALSE to indicate whether
the first row of the data file contains column names; nrows is the number of
records in the data table (by default, the ReadTable actor reads to the end of the
file); and £111 (set to either TRUE or FALSE) determines whether or not the actor
should "fill" missing columns at the end of a line with empty strings. Often, all input

360

Appendix C

ports other than the fileName can be left unconnected. See the R documentation
for read.table for more information.

The default R-script in the ReadTable actor reads a data file and creates an R data
frame object:

if (any(ls() == "header") == FALSE) header= TRUE

if (any(ls() == "separator") == FALSE) separator = ""

if (any(ls() == "nrows") == FALSE) nrows = -1

if (any(ls() == "fill") == FALSE) fill = TRUE

df <- read.table(fileName, sep=separator, header=header,
nrows=nrows, fill=fill)

df

dataframe <- df

pairs (df)

The ReadTable actor saves the data frame object to a text file in the R working
directory and outputs the path to the file via the dataframe output port.

The RExpression actor in Figure C.23 has a single user-defined input port (df1l),
which receives the R data frame. The actor's R-script creates a plot of the species
and count data:

species <- dfl[, 7]
ccent <= dfl[, 8]
plot (species, ccnt)

An Image] actor displays the plot and a Display actor displays the R-text output.

C.4.1.2.4 Example Nine: Passing DataFrames Between R-Actors

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/RExpression_Dataframe_Test.xml

The workflow in Figure C.24 uses an RExpression actor to create a simple R data
frame object and save it as a text file to the Kepler cache. The RExpression actor
passes the location of the saved file to a second RExpression actor via a user-defined
output port (df). The RExpressionZ2 actor reads the data file and selects the first row
and column of data, which is output to a Nonstrict Test actor that compares the input
against the value specified by its correctValues parameter. If the input matches the
test criteria, the workflow produces no output. However, if the two do not match,
Kepler will generate an error.

361

http://cran.r-project.org/doc/manuals/R-intro.html#The-read_002etable_0028_0029-function

Appendix C

SDF Director

RExpression

RExpression2

Figure C.24: Passing an R data frame object between RExpression actors.

The RExpression actor in Figure C.24 uses an R-script to create a simple data frame
object that contains two vectors {1,2,3} and {4,5,6}. The c () function used by the
script builds the two vectors, which are then combined into a single data frame
object with the data . frame function:

df <- data.frame(c(l,2,3),c(4,5,0))

The RExpression actor automatically saves the data frame object to the Kepler cache.
A user-defined df port is used to pass the location of the data frame file to the
RExpressionZ2 actor. Note that the output port should be named after the R-object it
emits (e.g., the df port outputs the df object from the actor's R-script, in this
case, the location of the data file). The df port must have type string (Figure C.25)

=

| £/ Configure ports for RExpression3 E]@
MName Input | Ou... | Multi... Type Direction Show MName Hide Units
s icsFileName | [] | [/]] DEFAULT]]
output [] v : DEFALULT]]
df O] (1 string) DEFAULT] [l
S TR

Figure C.25: Creating an output port (df) of type string.

The RExpression2 actor receives the data frame via a user-defined input port named
df1l.Its R-script selects the first row and column of data:

df2 <- dfl
dframe <- df2[1,1]

A user-defined output port (dframe) outputs the value of the first row and column
of data (1.0). The NonstrictTest actor simply tests to ensure that the value is what is

362

Appendix C

expected. If the value does not match the value of the NonstrictTest actor's
correctValues parameter, Kepler will generate an error message. If the values
match, the workflow will execute without error or output.

Note: even though the array value was initially specified as an integer (1), it will be returned
as a double (1.0) by the workflow. To force integer storage, use the syntax 1L (or cast
using as.integer).

C.4.2 Outputting Data

In the next sections, we will look at how to customize the RExpression actor to
output results generated by the R-script (an array object in one case and a matrix
object in another).

C.4.2.1 Outputting a Data Array

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/R_output_example.xml

The workflow in Figure C.26 uses an R-script to create a pairs graph of several
columns of EML-described meteorological data (barometric pressure, relative
humidity, and air temperature). In addition, the workflow plots the relative
humidity data and modified relative humidity data. All data are originally output as
fields by an EMLZDataset actor (Datos Meteorologicos), which are combined into
arrays an input to an RExpression actor. This data conversion is handled by three
SequenceToArray actors. The RExpression actor reads the data arrays and combines
them into a single R data frame.

363

Appendix C

SDF Director

Sequence To Array3

ImageJ

plogicos RExpressjon
Sequence To Array Display

Sequence To Array2 Array Plotter

Figure C.26: User-defined output ports are used to output data from an RExpression actor.

The RExpression actor in Figure C.26 reads three arrays of data (air temperature,
relative humidity, and barometric pressure) via three user-defined input ports,
T_AIR, RH, BARO, respectively. The R-script references the input data by the port
names and, in addition to summarizing the data and creating a pairs graph,
"renames” the RH vector XXX and creates a new vector of data (YYY) that contains
doubled RH values.

df <- data.frame (T AIR, RH, BARO)
summary (df)

pairs (df)

XXX <- RH

YYY <- 2*XXX

Two user-defined output ports (XXX and YYY)output the value of the RH data
and the modified RH data, respectively. The output ports must be named after the R-
objects they emit. Note that the RH vector had to be renamed in order to avoid
duplicate port names. The RExpression actor (or any actor, for that matter) cannot
have both an input and output port named RH.

An Image] actor displays the pairs graph (a .png file saved to the R working

directory), a Display actor displays the text output by R, and the ArrayPlotter actor
receives, plots, and displays the two RH arrays.

364

Appendix C

C.4.2.2 Outputting a Data Matrix

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/RExpression_Matrix_IO_Test.xml

The workflow in Figure C.27 uses an R-script to create and output an R matrix. An
Expression actor inputs a Kepler matrix into the RExpression actor, and a
NonstrictTest actor is used to ensure that the matrix output is as expected.

SDF Director

Expression
[1,2,3:4,5,6:8,8,8:9,8,1]

RExpression

Nonstrict Test

Figure C.27: Using the RExpression actor to output a matrix data object.

The RExpression actor in Figure C.27 reads a Kepler matrix specified by an
Expression actor. The matrix is input to the RExpression actor via a user-defined port
(in1). The R-script reads the value and creates an R matrix object:

inl
class (inl)
ma <- inl

A user-defined output port (ma) outputs the matrix data. The NonstrictTest actor
simply tests to ensure that the value is what is expected. If the input value does not
match the value of the NonstrictTest actor's correctValues parameter (Figure
C.28), Kepler will generate an error message. If the values match, the workflow will
execute without error or output.

365

Appendix C

v

Edit parameters for Nonstrict Test

? correctValues:
~

{1,2,3;4,5,6/8,8,8;9, 8, 1]}

tolerance:
trainingMode:
class:
semanticType00:
semanticTypell:

firingsPerIteration:

1 ILTT

]

ptolemy.actor.lib.MonStrict Test
urn:lsid:localhost:onto: 1: 1 #UnitTestControlactor

urn:lsid:localhost:onto:2: 1 #UnitTestControl

1

Figure C.28: The value of the correctvalues parameter must match the NonstrictTest actor's input. '

C.5 Example R Scripts and Functions

The following section contains examples of R workflows used for a variety of
common statistical tasks, such as linear regression, plotting, statistical summaries,

and sampling.

C.5.1 Simple Linear Regression

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/R/eml-simple-linearRegression-R.xml

The workflow in Figure C.29 uses an RExpression actor (R_linear_regression) to
perform and display a linear regression of two columns of data (air temperature and
barometric pressure) from a meteorological dataset.

366

Appendix C

SDF Director

'K omhtn'kﬂn;lﬂqlﬂihn»& Diplay
[t Tok tep

In(Zormula = DARD ~ T AIR)

CoefZiciente:
(Inzercept) T_AIR
958,377 -0,3244

> pLOS (T_ATR, BARD)
> sbline(res)

R_linear_regression

[R_Ssess_vegressionl png

{IBGI30 picels, BBE T34

952

;'(

Figure C.29: Using the RExpression to perform a linear regression.

The R_linear_regression actor in Figure C.29 reads two columns of meteorological
data (air temperature and barometric pressure) via two user-defined input ports:

T_AIR and BARO, respectively. The data are originally output As

Vectors by the EMLZDataset actor (Datos Meteorologicos).

Column

The RExpression actor converts the input data into R vectors, and then performs the
linear regression. The script also adds a regression line through the scatter plot

using the abline () function:

res <- Im(BARO ~ T AIR)

res
plot (T _AIR, BARO)
abline (res)

367

Appendix C

An Image] actor displays the scatter plot (a .png file saved to the R working
directory), and a Display actor displays the text output by R.

The Regression or the LinearModel actors—which are both preconfigured
RExpression actors—can also be used to perform a linear regression. Please see
Section C.5.7 for more information.

C.5.2 Basic Plotting

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/eml-simple-plot-R.xml

The workflow in Figure C.30 uses an RExpression actor to plot two columns of data:

relative humidity (y-axis) and barometric pressure (x-axis) from a meteorological
dataset.

368

Appendix C

SDF Director

Datos eorologicos

Sequence To Array

RExpression

Display

7 Rt pressieald prg :ngﬁ !

[TE0:A30 pirels, DK, TI5K

- r’\ unl-‘shgpb-pllllzbhphyv ':..‘_D.@
9 | P 0 O CrmOmm RO RO G B Tooks e X

setwd('C:/Documanta and Settinga/Kiceten/.keplec/*)

(2ilename = ‘PExpreasionid.png',widch = 400, beight = 400, pointaize = 12
c(99., 99, 99. 99, 99, 99, 99, 99, 99, 92, w3, 7L, 74, Iz, 05, 92, 99.
O <~ c(953.4, §53.0, 954.0, §54.3, 934.5, 934.7, 934.0, 934.0, 954.9, 953

Rean Jrd Qu. Nax.,
07,08 99,00 99,00

RH
i,
1

Neon 3cd Qu, Nax.
$53.3 544 §55.5

40

Figure C.30: Using the RExpression to plot data.

The RExpression actor in Figure C.30 reads two columns of meteorological data
(relative humidity and barometric pressure) via two user-defined input ports: RH
and BARO, respectively. The data are originally output As fields by the
EMLZ2Dataset actor (Datos Meteorologicos). The fields are joined into arrays by two
SequenceToArray actors. For more information about using SequenceToArray actors
in this way, please see Section C.4.1.1.4.

The R-script summarizes the two data sets and creates a plot of the values:

summary (RH)

summary (BARO)

plot (BARO, RH)

An Image] actor displays the scatter plot (a .png file saved to the R working
directory), and a Display actor displays the text output by R.

369

Appendix C

The RPlot, Scatterplot, Boxplot and Barplot actors—which are preconfigured
RExpression actors--can also be used to generate plots. Please see Section C.5.7 for
more information.

C.5.3 Summary Statistics

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/eml-summary-stats-R.xml

The workflow in Figure C.31 uses an RExpression actor to generate summary
statistics (mean, standard deviation, and variance) for a single column of data
(barometric pressure) from a meteorological dataset.

K/ eml-summary-stats-R.Mean 2@'
SDF Director Fle Tooks Help
953.167

K| .eml-summary-stats-R Standar df
Standard Devation [Fe 1ok Help

RExpressjon

1.61057456884778

1</ eml-summary-stats-R.Variance =
Fle Tooks Help

b .5939505050505

Variance

Figure C.31: Using the RExpression to generate summary statistics.

The RExpression actor in Figure C.31 reads barometric pressure data via a user-
defined input port (x). The data are originally output As column vector by the
EMLZ2Dataset actor (Datos Meteorologicos). The R-script creates the summary
statistics:

Xmean = mean (x)
xstd = sd(x)
Xxvar = var (x)

Three user-defined output ports (xmean, =xstd, and =xvar) output the
generated statistics. The output ports must be named after the R-objects they emit.
Display actors display the output statistics.

370

Appendix C

The Summary, SummaryStatistics, RMean, and RMedian actors can also be used to
generate summary statistics. Please see Section C.5.7 for more information.

C.5.4 3D Plotting

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/R_3D_Plot.xml

The workflow in Figure C.32 uses an RExpression actor to generate a 3D plot (a
rotated sine function).

SDF Director

RExpression

ImageJ

Display

|7 REspuesshonts pre

[TS0:TE0 paais, B-BE, 2358

[o= ~
| BB it s s o o = |
> g <=2 |
> £ <= function(x,y] (r <=~ Iqrt(X"2+y ‘
> 2 <- outer(x, y, £) |
> 2[1=.na(2)] <- 1 ‘
> op <~ paribg = "white")

> persp(x, ¥, 2, theca = 30, phi = 30, ‘
>

>

| vl
(L€ > |

Figure C.32: Using the RExpression to generate a 3D plot.

The RExpression actor in Figure C.32 generates a 3D plot using the following R-

script:

Hh X
A
|

N
A
|

z[1is

seq(-10
X

14

10,

length= 30)

function (x,vVy)

outer (x

.na(z)]

’

<-

Yr
1

f)

{ r <= sqgrt(x"2+y"2);

op <- par(bg = "white")

10 * sin(r)/r }

371

Appendix C

persp(x, vy, z, theta = 30, phi = 30, expand = 0.5, col =
"lightblue"™)

An Image] actor displays the 3D plot (a .png file saved to the R working directory),
and a Display actor displays the text output by R.

C.5.5 Biodiversity and Ecological Analysis and Modeling (BEAM)

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/BEAM_4_1.xml

The workflow in Figure C33 uses four RExpression actors to generate the
relationship between area sampled and species richness (a rarefaction curve) for a
data set, and then finds the best-fit linear model for predicting this relationship.
These actors (1) convert a local data set containing plant biomass data into a site by
species matrix, (2) generate a species richness/area relationship using a bootstrap
method, (3) find the best-fit linear model for the relationship, and (4) create a plot
of the results.

372

Appendix C

SDF Director

Plant community response to fertilization at Sapelo Island, Georgia

| property("KEPLER")+"/demos/R/Sapelo_lIsland_data.td"

Simple File Reader

s

lterations

Bootstrapping

Linear fit

Curve plotter

Site by Species matrix

mE %]
fmL Spasal ¢ 1 svin &
[Spasal ¢ z SVIR
fm Spadal ¢ 3 SVIR
. Spasal C a SVIR
L Spasal C s SVIR
mL spasal & SVIR
m Spasal 7 SVIR
L Spasal < s SVIR
| .|
< >

|

1 Cotve_plottec2 prg.
AE0AS0 picels, BBE J35R

Rarefaction curve

06

04

10 10{n0. specias) +1.95% confidence Inteevals
02

[151]

uﬁﬁh

il

woikiarea) [irtercept= D561 slope = 0038]

Figure C.33: The Biodiversity and Ecological Analysis and Modeling (BEAM) workflow.

The data used in the workflow (Sapelo_island_data.txt) is a text file that contains
information about parallel fertilization experiments that were performed at three
different geographical sites containing five different types of perennial plant

373

Appendix C

communities found in the salt marsh habitat around Sapelo Island, Georgia. Sixteen
one-meter square plots were placed within each plant community, and alternate
plots were assigned to control and fertilization treatments. The central 0.5m x 0.5m
of each plot was harvested and live plants were sorted to species, dried to a constant
mass, and weighed to measure biomass. The species biomass for the entire one
meter plot was estimated from the sample. The original data table contains nine
columns of data: site code, plant community code, fertilization treatment (N for
fertilized sites, C for control), treatment replicate (1-8), plant species code,
taxonomic serial number, plant mass per .25 square meter quadrant, and plant mass
calculated per square meter.

The workflow's first RExpression actor, Site by Species matrix, reads the data file and
"reorganizes it", dropping fields that are not relevant to the current calculation (e.g.,
the taxonomic serial number as well as the estimate of plant mass per square
meter), and creating a table of the presence (1) or absence (0) of species at each
combination of Site, Community, Treatment, and Replicate. The new data object is
written to a text file (Site_by_Species.txt) that is stored in the R working directory
(the Kepler cache, by default). The R actor is set to save the R workspace so that
other downstream actors can access the data (Figure C.34).

Edit parameters for Site by Species matrix

? : ;
-“/ R function or script: data <- read.table(infile, header = TRUE) 2
wat <- reshape (data, timevar="Species_Code"”, idv
mat[is.na(mac) == TRUE] <- O

mwat <~ cbind(mat[,1:4], 1felse(mat[,S5:dim(mat) [2

write.table{mat, file = "Site by Species.txt”, r
system("open Site_by Species.txt”)

mat v
1< | >
R working digectary: C:\Documents and Settings\Kirsten\ kepler\ o
Save or not: L-save v
Gr. . pra :
Graphics Output: 0O
Automatically dsplay graphics: O]
Number of X pixels in image: 480
Number of ¥ pixels in image: 430
save or not: —save
[Commik] [Add) [Remove] [Restore Defaults] [Preferences] [Help] [Cancel]

Figure C.34: Save the R workspace by setting the Save or not parameterto —--save.
The Bootstrapping actor loads the species data and uses a randomization to estimate

the expected number of species present in increasingly larger sample plot areas.
The actor randomly selects experimental plots until a given area is reached (from 4

374

Appendix C

to 320 square meters, in the example), and then sums the number of species present
in that area. By repeating this process a number of times (in this case 100), a
distribution expected species richness is estimated, and the mean and 95%
confidence intervals are calculated (y-axis) for given sample areas (x-axis). The
actor creates a summary table containing mean species richness and 95%
confidence intervals for each area sampled. The number of iterations to perform for
each estimate, as well as the initial plot area, are specified via Constant actors.

The LinearFit actor loads the R data and fits a linear model (or regression) to the
mean species richness estimates as a function of sampled area (both axes have been
log-transformed). In this case, the linear model does not fit the rarefaction curve
well, and other models should be investigated. The Curve plotter actor creates a plot
of both the rarefaction curve and the linear model, and the Image/ actor displays this
plot in Kepler.

C.5.6 Random Sampling
The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/sampling_occurrenceData_R.xml

The workflow in Figure C.35 uses an RExpression actor to read a local text file
containing a data set of latitude/longitude species occurrence locations, and divide
the data into two randomly assigned subsets.

K sampling_occurrencelata_RD... | -
Ble Tooks Melp

48 -43.49100 -13,.2500

SO «57.9167 =22.1667

1.8167

SDF Director

1667

-42.5500 -19.8833

Expression
| property("KEPLER")}+"lib/testdata/garp/DataPoints .bd"

RExpression

Display

Figure C.35: Using the RExpression actor to split a data set.

375

Appendix C

The location of the data set is specified by an Expression actor. The data are input to
the RExpression actor via a user-defined fi1eName port. The RExpression actor uses
the following R-script to create an R data-frame from the data and randomly assign
each value to one of two subsets:

read the original data

df <- read.table (fileName)

get number of rows (i.e. number of lines)
111 <- length(dfs$vl)

fraction <- 0.5

create a list of subset indices

sss <- sample(l:111, size=(fraction*111))
create 2 subsets

dfl <- dfsss,]

write output file

#sink ("FirstSubset.txt")

#dfl

#sink ()

df2 <- df[-(sss),]

write output file

#sink ("SecondSubset.txt")

#df2

#sink ()

dfl
df2

Note that comments can be added to R-scripts using the # syntax. A Display actor
displays the text output by R.

C.5.7 Custom RExpression Actors

The Kepler library contains a number of useful R actors that are "preconfigured™ with R-
scripts and ports: Barplot, Box plot, Correlation, LinearModel, RandomNormal,
RandomUniform, ReadTable, Regression, RMean, RMedian, RQuantile, Scatterplot,
Summary, SummarysStatistics.

Many custom RExpression actors are intended to be reused in multiple workflows
and therefore use “generic” port names that will not necessarily correspond to the
data. The Scatterplot actor is a prime example. It has two input ports:
Independent and Dependent that are used to plot the graph.

C.5.7.1 Barplot

The Barplot actor creates and saves a barplot graph. The actor outputs the path to the
saved barplot, which can be displayed by the ImageJ actor (Figure C.36).

376

Appendix C

0
W)
&

| Barpor2 pog

10N panlis. S0 T35

SDF Director

Values

> {6,8,11,17}

Names
* {"girls", "boys", "men", "women"}

Figure C.36: Using the Barplot actor.

C.5.7.2 Boxplot

The Boxplot actor creates and saves a boxplot that is based on a data set's "five-number
summaries"--the smallest observation, lower quartile (Q1), median, upper quartile (Q3),
and largest observation. The actor reads an array of values to plot and, optionally, an
array over which the values are divided (an array of dates, for example). The actor
outputs the path to the saved boxplot, which can be displayed by the ImageJ actor
(Figure C.37).

377

Appendix C

! Berphalé peg))
ESRON oy S0k J3%

SDF Director

Variable
q> {1,2,3,4,56,7,8,9,10)

Group
* {"11/01""11/01""11/01""11/01" "11/...

Figure C.37: Using the Boxplot actor. The sample data points fall into one of two groups: 11/01 or 11/02.

C.5.7.3 Correlation

The Correlation actor performs tests of association between two input variables:
Variablel and Variable2, which contain data arrays of equal length. The actor
outputs the level of association (r, rho, or tau, depending on the analysis) between the two
variables, an estimate of the p-value (if possible), and n (the number of items in the array)
(Figure C.38). By default, the actor performs a Pearson's correlation analysis; to specify
another analysis type, connect a Constant actor to the actor's method port and enter the
type of analysis (e.g., "spearmen™ or "kendall").

378

Appendix C

K| summary.Level of association [;
File Tools Help

SOF Director

-1.0

Variable 1 K| summary.P-value

File Tools Help

1.4042654220544E-24

K .summary.n

File Tools Help

5.0

Variable 2

54321

Figure C.38: Using the Correlation actor.

C.5.7.4 LinearModel

The LinearModel actor runs a variance or linear regression analysis on its inputs and
outputs the result (Figure C.39).

SDF Director [T Gaearstsants poe

P & |
B X
DRETR e, 308 105 {

Independent Variable

Image.
> {1,2,3 .45}

endent

Dependent Varigble
> {2,4,8,16,32}

Figure C.39: Using the LinearModel actor.

379

Appendix C

The LinearModel actor accepts an independent and a dependent variable, which are
specified as arrays (If using an EML data set, select "As Column Vector" as the output
format). If the independent variable is categorical, the actor runs a variance analysis (or a
t-test if the variable has only 2 categories). If the independent variable is continuous, a
linear regression is run. The actor outputs both a graphical and textual representation of
the analysis.

C.5.7.5 RandomNormal

The RandomNormal actor generates and outputs a set of normally (Gaussian) distributed
numbers with a mean of 0 and a standard deviation of 1 (Figure C.40). Specify the
number of random numbers to generate with a Constant actor. The actor outputs an array
of the random numbers as well as the file path to a histogram of the distribution, which
can be displayed with an ImageJ actor.

Fan bowd bo (sl pivg - 28
ERRTRE plewic, S 68 130

SDF Director Histogram of Dist

Number of random numbers to generate

100)

RandomNormgl

Figure C.40: Using the RandomNormal actor.

C.5.7.6 RandomUniform

The RandomUniform actor generates and outputs a set of uniformly distributed numbers.
Specify the number of random numbers to generate with a Constant actor (Figure C.41).
The actor outputs an array of random numbers as well as the path to a histogram of the
distribution, which can be displayed with an ImageJ actor.

380

Appendix C

T Randestbodidiat peg ok

WRARY plwy, S 58 1158

Histogram of Dist
SDF Director
. ImageJ
RandomUniform EE——
K. Display =)
Be Toodk Hep '
{0.5794760826975, 0.2002296601422, 0.1%
H v
Display < 5

Figure C.41: Using the RandomUniform actor.

C.5.7.7 ReadTable

The ReadTable actor reads a local, text-based, delimited data file and outputs the data in
a format that can be used by other R actors. For an example of this actor, please see
Section C.4.1.2.4.

C.5.7.8 Regression

The Regression actor runs a variance or linear regression analysis (Figure C.42). The
actor accepts an independent and a dependent variable, which are specified as arrays. If
using an EML data set, select "As Column Vector” as the output format. If the
independent variable is categorical, the actor uses R to run a variance analysis (or a t-test
if the variable has only 2 categories). If the independent variable is continuous, a linear
regression is run. The actor outputs both a graphical and textual representation of the
analysis.

381

Appendix C

SDF Director

Independent

> {1.2,3.4,56}

Regressign

ImageJ

Intercept

K ..in!ercept g@ﬁ

fle Tools Help

-1.6585994665654E-15

K ..Slope [ZH@w
Dependent File Tools Help 1
i (6,12,18,24,30,36) 6.0 f.'.‘j
v
< | >
Figure C.42: Using the Regression actor.
C.5.7.9 RMean

The RMean actor accepts an array of values and calculates their mean. If using an EML
data set, select "As Column Vector" as the output format. The actor outputs a histogram

of the data as well as the mean (Figure C.43).

382

Appendix C

0|
]

Taaeree

LT RIS

Histogram of Values

SDF Director

Values

> {1,2,3.4,56}

K| ..Mean Q@

File Tools Help

3.5 !ﬁ
|
.

£ l 111 | i)"

Figure C.43: Using the RMean actor.

C.5.7.10 RMedian

The RMedian actor accepts an array of values and calculates their median (Figure C.44).

i
)
[

1 Riiedion pon
LN gl TR0

Histogram of Values

— —

SDF Director

ImageJ

Values Vabes
;} {(1,11,8,7,152,2,14) .
K Median (= J[OJEF)
File Tools Help
7.5 o>
e
A | [

Figure C.44: Using the RMedian actor.

383

Appendix C

If using an EML data set, select "As Column Vector" as the output format. The actor
outputs a histogram of the values as well as the median value

C.5.7.11 RQuantile

The RQuantile actor accepts an array of data and generates sample quantiles. If using an
EML data set, select "As Column Vector" as the output format. The actor outputs a
histogram of the data as well as the generated quantiles (Figure C.45). One or more P-
values, specified with a Constant actor, specify which quantiles to calculate and return. P-
values must fall between 0 and 1.

[T it =e
AN el EeE T
Mistogram of Values

SDF Director

RQuantile

Values
:{» {1,7.11,11,11,13,20)

> Valaes S r e X 7 2 I 7B LA
> P <~ ¢(0.1, 0.25, 0.5, 0.75, D.9)
> Quantile <- guantile (Values, P)

37

Quantile

10% eS SOy 755 S0%
4,6 9.0 11,0 12.0 15.8

P
;# {1,25,5,75,9) *

Quantile

Figure C.45: Using the RQuantile actor.

C.5.7.12 Scatterplot
The Scatterplot actor reads an independent and a dependent variable, which are specified

as arrays. If using an EML data set, select "As Column Vector" as the data output format.
The actor creates and saves a scatter plot. (Figure C.46).

384

Appendix C

s

" ome phs | gug

SDF Director

Independent Variable
:} {121,11,17,34,5)

Scatterplot
Dependent Variable

;+ {513,43,132,1}

Figure C.46: Using the Scatterplot actor.

The axis labels in Figure C.46 are the generic names of the actor's two input ports:
"Independent” and "Dependent".

C.5.7.13 Summary

The Summary actor calculates summary statistics (e.g., mean, maximum, minimum,
standard deviation, or median) of a variable (e.g., height) with respect to one or more
factors (e.g., classroom and sex). Up to five factors can be input using the ports on the
left of the actor. Factors are input as arrays (if using an EML data set, select "As Column
Vectors" as the data output format).

On Mac systems, the Summary actor will open the system's default text-editor to display

a table of the calculated statistics. On Windows systems, the results can be found in the
Kepler cache, saved to a file called "summary.txt."

385

Appendix C

The workflow in Figure C.47 uses a Summary actor to calculate the mean of crab hole
density with respect to site and zone. A StringConstant actor (Summary operation)
specifies the type of operation to perform (mean).

SDF Director

Fall 200?rab population

Summary

o0
7

B>

la_Densty

Figure C.47: Using the Summary actor to calculate the mean of a variable with respect to several factors.

The workflow uses an EML data source, "Fall 2003 crab population,” and the data
output format is set to "As Column Vector." Note that the variable is input at the
bottom of the Summary actor and the factors are input into the ports on the actor's
left. The summary operation is specified using R-language syntax (e.g., mean,
max, min, sd, median,etc.)

The Summary actor performs the summary and saves a tab-delimited table of the
results to a text file called "summary.txt" in the R working directory (the .kepler
cache, by default). On a Mac system, the actor opens the table in the default text-
editing program.

C.5.7.14 SummaryStatistics
The SummaryStatistics actor accepts an array of values and calculates their mean,

standard deviation, and variance (Figure C.48). The actor outputs both a graphical and
textual representation of the summary analysis.

386

Appendix C

SDF Director

Values
4 {1,2,34,56,7,89,10)

Mean

Variance

e OB

File Tools Help

5.5 %i

K .standa... =JdJ|

< | || Eile Tools Help

Standard Devation

3.0276503540975

< | i

|

. Variance L__]W

File Tools Help

9.1666666666667

lij i

L’:
[v
| 3]

Figure C.48: Using the SummarysStatistics actor.

387

Glossary

Appendix: Glossary

actor

An actor is a workflow component representing a service or data. Actors can be dragged
and dropped from the Components and Data Access area onto the Workflow canvas,
where they can be customized via parameters, and connected to other actors via ports.

Antelope

Antelope is a system, originally developed by Boulder Real-Time Technologies
(http://www.brtt.com/), for archiving and distributing environmental monitoring
information, such as data from a remote camera. Antelope ORBs act as sources (and
sinks) for real-time data, such as waveforms and events.

array token

An array is a data structure consisting of elements that can be identified by a key (or
index). The first item in an array has a key of 0, the second 1, etc. Arrays in Kepler are
denoted with curly braces, e.g. {1,2,3,4,5}

ARC
ARC is an information format for geospatial data.

Babel

Babel is an application designed to convert file formats used in molecular modeling and
computational chemistry. For more information about Babel, see
http://smog.com/chem/babel/.

Boolean token
The Boolean token can have one of two values: true or false (represented by 1 or 0,
respectively)

channel
Data flows between workflow components via channels or "links" between components.

CIPRES

The CIPRES (Cyberinfrastructure for Phylogenetic Research) project works to enable
large-scale phylogenetic reconstructions that facilitate analyses of datasets containing
large numbers of bio molecular sequences. For more information about CIPRES, see
http://www.phylo.org/

complex number
A complex number consists of a real and imaginary part. In Kepler, the imaginary
component of a complex number is designated with an i or j (e.g., 6+7i)

composite actor
A composite actor, also called a nested or sub-workflow, is a collection or set of actors

http://smog.com/chem/babel/
http://www.phylo.org/

Glossary

bundled together to perform a more complex operation. Composite actors can contain a
director, or they can "inherit" their director from a containing workflow. Composite
actors that have a director are called opaque.

CORBA service
CORBA services, much like Web services, are computer programs that run on a remote
host and communicate using a standardized protocol that allows them to interoperate.

director

A director controls (or directs) the execution of a workflow, just as a film director
oversees a cast and crew. The actors take their execution instructions from the director. In
other words, actors specify what processing occurs while the director specifies when it
occurs. Every workflow must have a director.

double

A double represents a floating point number (e.g., 1.345) with "double precision.” The
data can contain about twice the number of significant digits as a float, which is a single-
precision data type that is less precise than a double, but also requires less memory.

EarthGrid

The EarthGrid is a distributed network providing scientists access to ecological,
biodiversity, and environmental data and analytic resources, such as data, metadata,
analytic workflows, and processors.

ESRI ACSII Grid

The ESRI ASCII Grid format is a raster format used by Kepler to pass data between
various actors. For more information about this format, see
http://docs.codehaus.org/display/GEOTOOLS/ArcInfo+ASCII+Grid+format.

ESRI Shape file

ESRI shape files contain a set of vector coordinates that represent the non-topological
geometry of a data set. For more information about ESRI shape files, see
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Expression language

Kepler uses the Ptolemy expression language to specify and evaluate algebraic
expressions (e.g., the value of a parameter or the Expression actor). For more information
about the expression language, see
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

fixed-point number

A fixed-point number is a number in which the position of the decimal point is constant.
U.S. currency can be represented by a fixed-point number that has two digits to the right
of the decimal point, for example. Fixed point numbers in Kepler are represented in the
following way: fix(value, integerBits, fractionBits).

389

http://docs.codehaus.org/display/GEOTOOLS/ArcInfo+ASCII+Grid+format
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Glossary

floating-point number
A floating-point number can contain a decimal point in any position (e.g., 12.34 or
.0093).

float

A float represents a floating point number (e.g., 1.345) with "single precision.” The data
type requires less memory and is less precise than a double (which also represents a
floating point number). The Kepler expression language does not support the float data
type. Use double or integer types instead.

GAMA

GAMA is a system for securely creating and managing Grid accounts. For more
information about GAMA, see:
http://www.geongrid.org/index.php/home/researchpubs/GAMA _ Grid_Account_Manage
ment_Architecture/

GAMESS

GAMESS (General Atomic and Molecular Electronic Structure System) is a program that
can perform a broad range of quantum chemical computations. For more information
about GAMESS, see http://www.msg.ameslab.gov/GAMESS/

GARP

GARP (Genetic Algorithm for Rule Set Production) is a genetic algorithm that creates an
ecological niche model representing the environmental conditions where a species would
be able to maintain populations. For more information about GARP, see
http://www.lifemapper.org/desktopgarp/.

GDAL

GDAL (Geospatial Data Abstraction Library) is a library used to translate raster
geospatial data formats (e.g., GeoTIFF, ASCII Grid, or GRASS Raster). For more
information about GDAL, see http://www.gdal.org/.

general data type
The general data type is the most inclusive of the types. A port assigned type "general”
can accept data of all types (array, string, matrix, etc)

GEON
GEON (Geosciences Network) is a distributed infrastructure for Geoscience research and
education. For more information about GEON, see http://www.geongrid.org/.

Globus

Globus is an open source software toolkit used for building Grid systems, which help
people share computing power, databases, and other tools. For more information about
Globus, see http://www.globus.org.

390

http://www.geongrid.org/index.php/home/researchpubs/GAMA__Grid_Account_Management_Architecture/
http://www.geongrid.org/index.php/home/researchpubs/GAMA__Grid_Account_Management_Architecture/
http://www.msg.ameslab.gov/GAMESS/
http://www.lifemapper.org/desktopgarp/
http://www.gdal.org/
http://www.geongrid.org/
http://www.globus.org/

Glossary

GML
GML is an XML-based encoding for geographic information. For more information
about GML, see http://www.w3.org/Mobile/posdep/GML Introduction.html

GRASS

GRASS is an open source software toolkit used to manage and analyze geospatial data
and produce graphics and maps. For more information about GRASS, see
http://grass.itc.it/.

grid

The Grid consists of geographically distributed resources (computers or scientific
instruments, for example) that can be easily accessed, allowing users to share computing
power, databases, and other tools.

GriddLeS

GriddLeS is a tool used to create Grid workflows that use legacy software, which has not
been designed for distributed use. For more information about GriddLes, see
http://www.csse.monash.edu.au/~davida/griddles/index.htm.

ImageJ
ImageJ is an application that can be used to display and process a wide variety of images
(tiffs, gifs, jpegs, etc.) For more information about ImageJ, see http://rsb.info.nih.gov/ij/.

integer token
The integer token ("int™) represents numerical values that have no decimal points (e.g., 11
or-17)

long data type

Integers followed by an "I" or "L" are of type long. The long data type can represent large
integers. Float and double data types can also be used: these data types have greater
storage capacity than long data types, but less precision/significant digits.

MATLAB

MATLAB is "a high-level technical computing language and interactive environment for
algorithm development, data visualization, data analysis, and humeric computation." For
more information about MATLAB, see
http://www.mathworks.com/products/matlab/description1.html.

matrix token

A matrix contains data that can be referenced by row and column. Matrices in Kepler are
specified with brackets. Commas separate row elements and semicolons separate rows.
For example, a 1x3 matrix would be represented as [1,2,3]. A 2x2 matrix would be
represented by [1,2;3,4]

MoML
MoML (Modeling Markup Language) is an XML format used to store workflows. For

391

http://www.w3.org/Mobile/posdep/GMLIntroduction.html
http://grass.itc.it/
http://www.csse.monash.edu.au/~davida/griddles/index.htm
http://rsb.info.nih.gov/ij/
http://www.mathworks.com/products/matlab/description1.html

Glossary

more information about MoML, see
http://ptolemy.eecs.berkeley.edu/papers/05/ptlldesignl-intro/ptlldesignl-intro.pdf

Nimrod

Nimrod is an application that allows computations to be run on the Grid. For more
information about Nimrod, see
http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm

object token

An object token is a data container for an arbitrary Java object (most complex 'things' in
Java are objects). These tokens can be used to pass complex Java objects around a Kepler
workflow. Object tokens are primarily used for custom workflows with custom actors.
Non-programmers will probably not find them very useful.

ORB

An ORB (Object Resource Broker) permits applications, which may be running on
different servers or under different operating systems, to exchange and process
information.

parameter
Parameters are configurable values that can be attached to a workflow or to individual
directors or actors.

PAUP
PAUP is a tool used to infer phylogenetic relationships. For more information about
PAUP, see http://paup.csit.fsu.edu/

port

Each actor in a workflow can contain one or more ports used to consume or produce data
and communicate with other actors in the workflow. Ports can be one of three types:
input, output, or input/output. Each port is configured to be either a "singular” or
"multiple” port. A single port can be connected to only a single data channel, whereas a
multiple port can be connected to multiple channels.

R
R is a language and environment for statistical computing and graphics. For more
information about R, see http://www.r-project.org/.

record token

A record token consists of named elements and their values. In Kepler, records are
specified between curly braces. For example, {a=1, b=2} is a record with two elements,
named a and b, with values 1 and 2, respectively.

relation

Relations allow users to "branch™ a data flow. Branched data can be sent to multiple
places in the workflow.

392

http://ptolemy.eecs.berkeley.edu/papers/05/ptIIdesign1-intro/ptIIdesign1-intro.pdf
http://paup.csit.fsu.edu/
http://www.r-project.org/

Glossary

scalar

The term scalar designates a value that consists only of magnitude (as opposed to a
vector, which consists of both a magnitude and direction). In Kepler, scalar values may
have any scalar data type: double, int, long, etc.

Soaplab
Soaplab is a set of Web services providing access to (mainly) data analysis applications
on remote computers.

SRB

SRB is a Grid storage management system providing data access, transfer, and search
functionality, as well as persistent archiving (usually for files). For more information
about SRB, see http://www.sdsc.edu/srb/index.php/What_is_the SRB

string data type
A string is a sequence of characters. Strings are specified with quotation marks. Anything
between an open and close " is interpreted as a string.

token
Data in Kepler is encapsulated and passed between workflow components as tokens.
Each token has an assigned data type (int, object, or matrix, for example).

Web service
A Web service is a computer program that runs on a remote host and communicates using
a standardized protocol.

workflow

Workflows are a flexible tool for accessing scientific data (streaming sensor data,
medical and satellite images, simulation output, observational data, etc.) and executing
complex analysis on the retrieved data. Each workflow consists of analytical steps that
may involve database access and querying, data analysis and mining, and intensive
computations performed on high performance cluster computers.

WSDL

WSDL is a format for describing network services—from simple eBay watcher services
to complex distributed applications. For a complete list of registered EBI-registered
WSDLs, see http://www.ebi.ac.uk/soaplab/services.

XSLT
An XSLT file specifies how an XML document should be transformed. For more
information about XSLT, see http://www.w3.org/TR/xslt

393

http://www.ebi.ac.uk/soaplab/services
http://www.w3.org/TR/xslt

	1. Introduction to Kepler
	1.1 What is Kepler?
	1.1.1 Features
	1.1.2 Architecture

	1.2 History of the Kepler Project
	1.3 Kepler Code Contributors
	1.4 Future Goals
	1.5 Participating in Kepler Development
	1.5.1 Using Eclipse
	1.5.2 Contributing to Kepler

	1.6 Reporting Bugs
	1.7 Further Reading

	2. Installing and Running Kepler
	2.1 System Requirements
	2.2 Installing Kepler
	2.2.1 Installing on Windows
	2.2.3 Installing on Macintosh
	2.2.4 Installing on Linux

	2.3 Starting Kepler
	2.4 The User Interface
	2.4.1 Menu Bar
	2.4.1.1 File Menu
	2.4.1.2 Edit Menu
	2.4.1.3 View Menu
	2.4.1.4 Workflow
	2.4.1.5 Tools
	2.4.1.6 Window
	2.4.1.7 Help

	2.4.2 Toolbar
	2.4.2.1 View Tools
	2.4.2.2 Run Tools
	2.4.2.3 Port Tools

	2.4.3 Components, Data Access, and Outline Areas
	2.4.3.1 Components Tab
	2.4.3.2 Data Tab

	2.4.4 Workflow Canvas
	2.4.4.1 Director Right-Click Menu
	2.4.4.2 Actor Right-Click Menu

	2.4.5 Navigation Area

	3. Scientific Workflows
	3.1 What is a Scientific Workflow?
	3.2 Components of a Workflow
	3.2.1 Directors
	3.2.2 Actors
	3.2.3 Composite Actors
	3.2.4 Ports
	3.2.4.1 Actor Ports
	3.2.4.1 External Port
	3.2.4.3 Port-Parameter

	3.2.5 Channels and Tokens
	3.2.6 Data Types
	3.2.7 Relations
	3.2.8 Parameters
	3.2.8.1 Actor Parameters
	3.2.8.2 Model Parameters
	3.2.8.3 Port-Parameters

	4. Working with Existing Scientific Workflows
	4.1 Opening Workflows
	4.1.1 Opening Local Workflows

	4.2 Running Workflows
	4.2.1 Runtime Window
	4.2.2 Run Button
	4.2.3 Running Workflows with Adjusted Parameters

	4.3 Modifying Workflows
	4.3.1 Substituting Data Sets
	4.3.2 Substituting Analytical Components

	4.4 Saving Workflows
	4.5 Searching for Data and Components
	4.5.1 Searching for Available Data
	4.5.2 Searching for Standard Components
	4.5.3 Searching for Components in the Kepler Repository

	5. Building Workflows with Existing Actors
	5.1 Prototyping Workflows
	5.2. Choosing a Director
	5.2.1 Synchronous Dataflow (SDF)
	5.2.2 Process Networks (PN)
	5.2.3 Discrete Events (DE)
	5.2.4 Continuous Time
	5.2.5 Dynamic Dataflow (DDF)

	5.3 Using Existing Actors
	5.3.1 Using Actors from the Standard Component Library
	5.3.2 Instantiating Actors Not Included in the Standard Library
	5.3.3 Using the Kepler Analytical Component Repository
	5.3.4 Saving Actors to Your Library
	5.3.5 Importing Actors as KAR Files
	5.3.6 Actor Icon Families

	5.4 Using Composite Actors
	5.4.1 Benefits of Composite Actors
	5.4.2 Creating Composite Actors
	5.4.3 Saving Composite Actors
	5.4.4 Combining Models of Computation

	5.5 Using the ExternalExecution Actor to Launch an External Application
	5.5.1. Opening the HelloWorld Application
	5.5.2 Opening a Local Browser
	5.5.3 Opening the Maxent Application
	5.5.4 Opening R

	5.6 Iterating and Looping Workflows
	5.6.1 Iterating with the SDF Director
	5.6.2 Using Ramp and Repeat Actors
	5.6.3 Using Arrays Instead of Iterating
	5.6.4 Iterating with Higher-Order Composites
	5.6.5 Creating Feedback Loops

	5.7 Documenting Workflows
	5.7.1 Annotation Actors
	5.7.2 Documentation Menu

	5.8 Debugging Workflows
	5.8.1 Animating Workflows
	5.8.2 Exceptions
	5.8.3 Checking System Settings
	5.8.4 Listening to the Director

	5.9 Saving and Sharing Workflows
	5.9.1 Saving and Sharing Your Workflows as KAR or XML Files
	5.9.2 Opening and Running a Shared XML Workflow

	6. Working with Data Sets
	6.1 Data Actors
	6.2 Using Tabular Data Sets with Metadata
	6.2.1 Viewing Metadata
	6.2.2 Outputting Data for Use in a Workflow
	6.2.3 Querying Metadata

	6.3 Using Tabular Data without Metadata
	6.3.1 Comma- Tab-, Text-Delimited Files
	6.3.2 Accessing Data from a Website

	6.4 Accessing Data Access Protocol (DAP) Sources
	6.5 Accessing Data from DataTurbine Servers
	6.6 Using FTP
	6.7 Using Data Stored in Relational Databases
	6.8 Using Spatial and Image Data
	6.8.1 Working with Images
	6.8.2 Working with Spatial Data

	6.9 Using Gene and Protein Sequence Data

	7. Using Remote Computing Resources: The Cluster, Grid and Web Services
	7.1 Data Movement and Management
	7.1.1 Saving and Sharing Data on the EarthGrid
	7.1.2. Secure Copy (scp)
	7.1.3 GridFTP
	7.1.4 Storage Resource Broker (SRB)
	7.1.5 Integrated Rule-Oriented Data System (iRODS)

	7.2 Remote Service Execution
	7.2.1 Using Web Services
	7.2.2 Using REST Services
	7.2.2 Using Soaplab Services
	7.2.3 Using Opal Services

	7.3 Job Submission
	7.3.1 Cluster Job Submission
	7.3.2 Grid Job Submission
	7.3.2.1 Kepler Globus Actors for Proxy Certificate
	7.3.2.2 Kepler Globus Actors for Pre-WS GRAM
	7.3.2.2 Kepler Globus Actors for WS GRAM

	8. Mathematical, Data Analysis, and Visualization Packages
	8.1 Expressions and the Expression Actor
	8.1.1 The Expressions Language
	8.1.1.1 Constants and Literals
	8.1.1.2 Variables
	8.1.1.3 Operators
	8.1.1.4 Arrays
	8.1.1.5 Matrices
	8.1.1.6 Records
	8.1.1.7 Methods
	8.1.1.8 Functions

	8.1.2 Expressions and Parameters
	8.1.3 Expressions and Port Parameters
	8.1.4 Expressions and String Parameters
	8.1.5 The Expression Actor

	8.2 Statistical Computing: Kepler and R
	8.2.1 What is R?
	8.2.2 Installing R
	8.2.3 Useful R Actors
	8.2.4 Working with R Actors
	8.2.4.1 Using the RExpression Actor
	8.2.4.2 Using EML Datasets with the RExpression Actor
	8.2.4.3 Using Excel Data (i.e., Non-EML data) with the RExpression Actor

	8.3 Statistical Computing: MATLAB
	8.4 Image Manipulation: ImageJ
	8.4.1 Intro to ImageJ and the ImageJ Actor
	8.4.1.1 Rescaling Images
	8.4.1.3 Adjusting Image Color and Brightness
	8.4.1.4 Selecting a Color Palette for ASC Grid Images

	8.4.2 The IJMacro Actor

	8.5 Spatial Data: Geographic Information Systems (GIS)
	8.5.1 Masking a Geographical Area with the ConvexHull and CVToRaster Actors
	8.5.2 Geospatial Data Abstraction Library (GDAL) Actors

	9. Domain Specific Workflows
	9.1 Chemistry
	9.2 Ecology
	9.3 Geology
	9.4 Molecular Biology
	9.5 Oceanography
	9.6 Phylogeny

	Appendix A: Creating New Actors
	A.1 Building a Custom Actor Based on an Existing Actor
	A.2 Creating a New Actor by Extending a Java Class
	A.2.1 Coding a New Actor
	A.2.1.1 The Constructor
	A.2.1.2 Public Methods (Action methods and more)
	A.2.1.3 Public Variables: Actor Ports, Parameters, and Port-Parameters
	A.2.1.4 Actor Icons

	A.2.2 Compiling a New Actor

	A.3 Sharing an Actor: Creating a KAR File
	A.3.1 The Manifest File
	A.3.2 The MOML File

	Appendix B: Modules
	B.1 The Module Manager
	B.2 Developing Modules

	Appendix C: Using R in Kepler
	C.1 Installing R
	C.2 A Brief Overview of R
	C.2.1 Data Objects
	C.2.2 Functions
	C.2.3 Further Resources

	C.3 The RExpression Actor
	C.3.1 Inputs
	C.3.1.1 Input Ports
	C.3.1.2 Parameters (the R-script and more)

	C.3.2 Outputs
	C.3.2.1 R-Text
	C.3.2.2 Graphical Output
	C.3.2.3 User-Defined Output

	C.4 Handling Data
	C.4.1 Inputting Data
	C.4.1.1 EML (Ecological Metadata Language) Data Sets
	C.4.1.1.1 Example One: Selecting and Using Columns of Data (Column Vectors)
	C.4.1.1.2 Example Two: Selecting and Using an Entire Data Set (Column-Based Records)
	C.4.1.1.3 Example Three: Selecting and Using a Cached Dataset (read.table function)
	C.4.1.1.4 Example Four: Using Data Sequences
	C.4.1.1.5 Example Five: Using Ports Configured as Multiports

	C.4.1.2 Non-EML Data Sets
	C.4.1.2.1 Example Six: Local Text-Based Data Sets (Selecting an Entire Data Set)
	C.4.1.2.2 Example Seven: Using Kepler Records
	C.4.1.2.3 Example Eight: Using the ReadTable Actor with Local Text-Based Data Sets
	C.4.1.2.4 Example Nine: Passing DataFrames Between R-Actors

	C.4.2 Outputting Data
	C.4.2.1 Outputting a Data Array
	C.4.2.2 Outputting a Data Matrix

	C.5 Example R Scripts and Functions
	C.5.1 Simple Linear Regression
	C.5.2 Basic Plotting
	C.5.3 Summary Statistics
	C.5.4 3D Plotting
	C.5.5 Biodiversity and Ecological Analysis and Modeling (BEAM)
	C.5.6 Random Sampling
	C.5.7 Custom RExpression Actors
	C.5.7.1 Barplot
	C.5.7.2 Boxplot
	C.5.7.3 Correlation
	C.5.7.4 LinearModel
	C.5.7.5 RandomNormal
	C.5.7.6 RandomUniform
	C.5.7.7 ReadTable
	C.5.7.8 Regression
	C.5.7.9 RMean
	C.5.7.10 RMedian
	C.5.7.11 RQuantile
	C.5.7.12 Scatterplot
	C.5.7.13 Summary
	C.5.7.14 SummaryStatistics

	Appendix: Glossary

