

Getting Started with the Kepler

Master-Slave Module

Master-Slave Suite includes:

Master-Slave Module and Kepler Suite

Master-Slave 2.2.0

Mar 24, 2011

 2

Getting Started with the Kepler Master-Slave Module

The Getting Started with the Kepler Master-Slave Module guide is for scientists who
would like to use the Master-Slave module in Kepler. The Master-Slave module was
created to distribute parts of a workflow to be remotely executed on other
machines.

Table of Contents

1. Introduction.. 2

2. Downloading and Installing the Master-Slave Module 2

3. Master-Slave Architecture .. 3

4. Building Workflows with Master-Slave Module ... 3

5. Distribution Configuration Options ... 5
5.1. Software Level Distributed Options Configuration .. 5
5.2. Actor Level Distributed Options Configuration ... 7

6. Start Kepler as a Master/Slave Node ... 7

1. Introduction
This guide introduces the main components and functionality of the Master-Slave
module. The Master-Slave module is an add-on module suite for Kepler, a software
application for workflow distributed execution on multiple independent machines
in either local-area network (LAN) or wide-area network (WAN). A paper on this
module and application is: Jianwu Wang, Ilkay Altintas, Parviez R. Hosseini, Derik
Barseghian, Daniel Crawl, Chad Berkley, Matthew B. Jones. Accelerating Parameter
Sweep Workflows by Utilizing Ad-hoc Network Computing Resources: an Ecological
Example. In Proceedings of IEEE 2009 Third International Workshop on Scientific
Workflows (SWF 2009), 2009 Congress on Services (Services 2009), pages 267-274.

2. Downloading and Installing the Master-Slave Module
From the Kepler application menu select Tools => Module Manager. From the
Module Manager dialog, select the Available Modules tab. Select ‘Master-Slave-2.2.0’
from the list of Available Suites, then click the right arrow button to move the
Master-Slave-2.2.0 suite to the list of Selected Modules. Click the ‘Apply and Restart’
button to retrieve the Master-Slave suite and restart Kepler.

 3

3. Master-Slave Architecture

Figure 1: Master-Slave Architecture

In this distributed framework, illustrated in Figure 1, each computing node runs an
instance of the workflow execution engine and is assigned one or more roles.
Workflow execution is initiated by a Master node that performs overall coordination
of an arbitrary number of Slave nodes that execute sub-workflow tasks. A
distributed composite actor was designed, called DistributedCompositeActor, to act
as the role of Master. Each input data received by the DistributedCompositeActor is
distributed to a Slave node, and the result data is returned from the Slave node to
the Master node after the sub-workflow is executed on the Slave node.

For the Slave role of our Master-Slave architecture, we implemented a Java Remote
Method Invocation (RMI) service that wraps the Kepler execution engine and that
communicates with the Master through the underlying RMI infrastructure. For each
Slave node, a Slave package and the domain specific programs to be invoked, such as
the Fortran and Batch applications, must be deployed on the Slave node beforehand.
During the initial phase of the workflow, DistributedCompositeActor will transfer its
specification to each Slave. Then the Slaves are ready for receiving input data and
execution. The output data will be transferred back to the Master node once the
current iteration is finished.

To manage available Slave information, a centralized Web service, called the
Registration Service, is provided. When a Slave RMI service is started, it can invoke
the Registration Service to register this node as a Slave. This allows the Master node
to get a listing of all available Slave nodes by querying the Registration Service.

4. Building Workflows with Master-Slave Module

To build workflows utilizing Master-Slave module, users need to use
DistributedCompositeActor. Since DistributedCompositeActor inherits the same
interfaces of other actors in Kepler, it is very easy to switch between the regular
composite actor and DistributedCompositeActor. For workflow users, this actor is

 4

very similar to the regular composite actor except a few additional configuration
parameters for the Slaves, such as the Slave host URL. From a workflow
specification perspective, the only change is the actor class name and some
attributes. All other workflow specification details, such as inner actors and links
between actors, are still the same. We note that a director has to be used in
DistributedCompositeActor to make it work properly.

Figure 2: DistributedCompositActor

DistributedCompositeActor can be gotten by either dragging and dropping from
actor component panel (see Figure 2), or distribute existing normal composite
actors. To distribute a normal composite actor to be a DistributedCompositeActor,
users just need right click the actor and use ‘Distribute This Actor’ option (see
Figure 3). Similarly, a DistributedCompositeActor can also be transformed to be
normal actor using ‘UnDistribute This Actor’.

 5

Figure 3: Distribute a normal composite actor to be DistributedCompositActor

5. Distribution Configuration Options
There are several options can be configured in Master-Slave module, which can be
categorized into software level and actor level. The options for the software level
will be effective for the whole Kepler, namely all workflows built in Kepler will use
the configurations. The options for the actor level have to be configured for each
actor and therefore only effective for the actor.

5.1. Software Level Distributed Options Configuration
The first main aspect of software level distribution configuration options is the
“Distributed Computing Options” dialogue which can be gotten by clicking menu
option ‘Tools-> Distributed Computing Options’ and shown in Figure 4. The
hostname or IP addresses of Slaves that are registered to the Kepler repository will
be shown in the ‘Available Slaves’ box. Users can select which Slaves they want to
use by moving them to ‘Used Slaves’ box. If a Slave is not registered, it can still be
used by using ‘Add Manually’ button and put its hostname or IP address.

 6

Figure 4: Distributed Computing Options

The second main aspect of software level distribution configuration options is the
“Distributed User Access Configuration” dialogue which can be gotten by clicking
menu option ‘Tools-> Distributed User Access Configuration’ and shown in Figure 5.
This dialogue manages which users can use the Kepler instance as a Slave. Since we
are using the LDAP user management service provided by Knowledge Network for
Biocomplexity (http://knb.ecoinformatics.org), each user should have his/her
distinguished name, such as 'uid=kepler,o=unaffiliated,dc=ecoinformatics,dc=org'.

 7

Figure 5: Distributed User Access Configuration

Besides the above two main aspects, more configuration options can be done by
editing the configuration file of this module, which is located at $Kepler/master-
slave-2.2/resources/configurations/configuration.xml. The options include
whether register this Kepler instance, where to register, user information and so on.

5.2. Actor Level Distributed Options Configuration
When double clicking a DistributedCompositeActor or distribute a normal
composite actor, a dialogue (shown in Figure 6) called “Distributed Composite Actor
Options” will show up. This dialogue will show or specify which Slaves will be used
for this particular actor. By this way, different DistributedCompositeActor actors
might use different Slaves in one workflow.

Figure 6: Distributed Composite Actor Options

6. Start Kepler as a Master/Slave Node
By default, when Kepler is started with Master-Slave module, this instance can be

used as both Master and Slave node. Also a Master node does not need to be started

 8

separately, it will communicate with Slave nodes when a workflow executes. Yet a
Slave node has to be started beforehand so that it can handle requests from a Master
node. A machine may only be accessed by batch mode, where Kepler graphical user
interface cannot show up. So we also provide a set of commands to start Slave
separately, which can be found in $Kepler/master-slave-2.2/ directory. The
‘startSlave’ command will start a Slave process at the node, display execution
messages, and will not quit until explicitly typing ‘X’ in the console. The
‘startSlaveAsyn’ command will start a Slave process asynchronously and quit
immediately, leaving the Slave process running in the background. The
‘startSlaveWithSecurityPolicy’ command is to start Slave in a more secure way
whose policy is specified in the ‘master-slave.policy’ file in the same directory. The
‘stopSlave’ command is to explicitly stop a Slave process which is started by the
above commands.

