

Getting Started with Kepler
Provenance 2.5

November 2015

 2

Getting Started with the Kepler Provenance Module
The Provenance module was created to capture and query workflow execution
history.

Table of Contents

1. Introduction ... 2

2. Downloading and Installing the Provenance Module .. 3

3. Capturing Provenance .. 3
3.1. Configuring Storage Location .. 3

4. The Provenance Manager Command-Line Program .. 4

5. Provenance Query API .. 5

6. Relational Schema .. 6
6.1. Specification Tables .. 6

6.1.1. Actor .. 6
6.1.2. Director .. 6
6.1.3. Entity ... 6
6.1.4. Parameter ... 7
6.1.5. Port .. 7
6.1.6. Tag .. 7
6.1.7. Workflow ... 8

6.2. Workflow Evolution.. 8
6.2.1. Workflow_change .. 8

6.3. Workflow Execution ... 8
6.3.1. Actor_fire ... 8
6.3.2. Associated_data .. 9
6.3.3. Data .. 9
6.3.4. Error .. 9
6.3.5. Parameter_exec.. 10
6.3.6. Port_event .. 10
6.3.7. Workflow_exec ... 10

6.4. The HSQL Query Browser .. 11
6.5. Example SQL Queries .. 12

1. Introduction
This guide introduces the main components and functionality of the Provenance
module. The Provenance module is an add-on module suite for Kepler, a software
application for the analysis and modeling of scientific data, and it provides
functionality for capturing and querying workflow execution history stored locally
on your computer.

 3

2. Downloading and Installing the Provenance Module
From the Kepler application menu select Tools => Module Manager. From the
Module Manager dialog, select the Available Modules tab. Select ‘provenance-2.5’
from the list of Available Suites, then click the right arrow button to move the
provenance-2.5 suite to the list of Selected Modules. Click the ‘Apply and Restart’
button to retrieve the provenance suite and restart Kepler.

3. Capturing Provenance
Once you have installed the Provenance module, you will see a button on the toolbar
with a “P” as shown in Figure 1. By default, provenance capturing is on, and may be
turned off by pushing this button. The button will turn red, denoting recording is
now off. If you have the Reporting suite installed, both the Workflow Run Manager
and Report Designer are disabled unless provenance capturing is turned on.
Further, provenance can only be captured for workflows that have SDF, DDF, or PN
directors.

Figure 1: Provenance Button

3.1. Configuring Storage Location
By default, provenance information is written to an HSQL database located in
$HOME/KeplerData/modules/provenance/provenanceDB. You can change
the location of this database or store provenance in a MySQL, Oracle, or PostgreSQL
database by editing the Provenance module’s configuration file, which is located in
$HOME/KeplerData/modules/provenance/configuration/configura

tion.xml. (If this file does not exist, you can edit the provenance configuration file
in the Kepler installation directory). Table 1 describes several relevant fields in this
file.

Table 1: Provenance Configuration Fields

Field Description
DB Host The hostname of the database server.
DB Port The port number for the database server.
DB User Name The user name for the database.
Password The password for the database.
DB Type The type of database: HSQL, MySQL, Oracle, PostgreSQL.
DB Name The name of the database. If the database type is HSQL, this is the

filename in $HOME/KeplerData/modules/provenance. (Absolute
paths can also be used). If the database type is MySQL, this is the
schema name. If the database type is Oracle, this is the SID name.

DB Table Prefix This string will be prepended to all tables in the provenance
schema. If you want to add the provenance tables into an existing
database, this field can be used to prevent name collisions.

 4

When the provenance system makes the first connection to the database, it checks if
the provenance tables already exist. If they are not found, they are automatically
created.

The configuration file provides the default location to store provenance information
for all workflow runs. Alternatively, you can specify these settings on a per-
workflow basis by adding the Provenance Recorder to the workflow canvas:

1. Drag and drop the Provenance Recorder from the actor library to the
workflow canvas. (You can search for “provenance” in the Search
Components field).

2. Double-click on the Provenance Recorder on the canvas and a dialog will
appear (Figure 2) allowing you to edit the configuration parameters. When
you are done, push the “Commit” button to save your changes.

3. Finally, click on the “P” button on the toolbar to turn off the default
provenance settings.

Figure 2: Provenance Recorder Configuration Dialog

4. The Provenance Manager Command-Line Program
The Provenance Manager is a command-line program that provides access to the
information stored in the provenance database. The Provenance Manager is
$HOME/KeplerData/kepler.modules/provenance-2.5.0/prov-manager.sh on Mac and
Linux, and %USERPROFILE%/KeplerData/kepler.modules/provenance-2.5.0/prov-
manager.bat on Windows.

To list all the workflow executions in the database:

prov-manager.sh -l

 5

The Provenance Manager can export workflow executions from the database. The
provenance is serialized as PROV JSON1 and written to a KAR file.

prov-manager -o output.kar [-all | -run n] [-delete]

-all export all workflows runs.

-run n export run n.

-delete delete workflow runs in database after export.

Workflow executions can also be imported:

prov-manager -i input.kar [-force]

-force attempt to import runs despite any missing

dependencies.

The Provenance Manager has other command-line options that are not described in
this document. Run prov-manager with –h to see them all.

5. Provenance Query API
Provenance information is stored in a relational schema, and the Provenance
module includes a Java API to access this information. The API is described in the
interface org.kepler.provenance.Queryable and implemented in the class
org.kepler.provenance.sql.SQLQueryV8. Below are several example
queries and their implementation; the object query is an instance of Queryable.

1. What workflow names does the database contain?

List<String> names = query.getWorkflows();

2. What are the run ids for workflow “a”?

List<Integer> ids = query.getExecutionsForWorkflow(“a”);

3. What are the ids for all data transferred between actors for run 2?

List<Integer> ids =

query.getTokensForExecution(2, true);

4. What is the workflow definition (MoML) for run 2?

String moml = query.getMoMLForExecution(2);

5. What are the names and values of each parameter for run 2?

Map<String,String> map =

1 PROV JSON is described here.

http://www.w3.org/Submission/2013/SUBM-prov-json-20130424

 6

query.getParameterNameValuesForExecution(2);

Section 6.4 shows how to answer these queries using SQL.

6. Relational Schema
The relational schema represents three types of information: the contents or
specification of workflows, how these specifications change over time, and events
that occur during workflow execution. This section describes the tables in the
relational schema for each of these areas.

6.1. Specification Tables
The workflow specification records information about actors, directors, and
parameters, and ports in each workflow.

6.1.1. Actor

 Name Type References Recorded By

class varchar regActor()

id long entity(id) regActor()

This table maps an actor to its implementation class.

6.1.2. Director

 Name Type References Recorded By

class varchar regDirector()

id long entity(id) regDirector()

This table maps a director to its implementation class.

6.1.3. Entity

 Name Type References Recorded By

deleted boolean regNNN()

display varchar regNNN()

id long regNNN()

name varchar regNNN()

prev_id long regNNN()

type varchar regNNN()

wf_change_id long workflow_change(id) regNNN()

wf_id long workflow(id) regNNN()

Each entity in the workflow, such as actors, ports, parameters, relations, etc., is
represented by a row in this table. Name is the fully qualified name of the entity in

 7

the workflow relative to the workflow name. The display column contains the
display name of the entity if it is different from its name; otherwise display is empty.
The type column denotes the type of entity such as “actor”, or “port”.

When a parameter’s value changes, a new row is added to this table and the
parameter table: the entity(id) of the new row can be used to find the new
parameter value in parameter(value). Previous values of the parameter can be found
by following the entity(prev_id) ids. Currently, deleted is always false.

6.1.4. Parameter

 Name Type References Recorded By

id long entity(id) regParameter()

type varchar regParameter()

value varchar regParameter()

This table stores parameter types and values, including all previous values for each
parameter.

6.1.5. Port

 Name Type References Recorded By

direction int regPort()

id long entity(id) regPort()

multiport boolean regPort()

Actors read and write tokens via ports. The direction column holds an enumeration
value that denotes if the port is an input, output, or input-output port. Multiport is
true if the port allows more than one connection to it.

6.1.6. Tag

Name Type References Recorded By

id long

searchstring varchar

type varchar

urn varchar

wf_exec_lsid varchar workflow_exec(lsid)

This table stores tags associated with either workflows or workflow executions. The
urn contains the URI of the ontology concept being tagged, which is normally
appended with another "#" and the label of the concept; if the concept cannot be
resolved, it can still be displayed (if it turns up in search results, for instance) by its
normal human-readable representation. The type designates either a workflow or
workflow execution. In the latter case, searchstring is searched against when

 8

searching through executions or workflows, and wf_exec_lsid refers to the
execution’s LSID.

6.1.7. Workflow

 Name Type References Recorded By

id long provenance events

lsid varchar provenance events

name varchar provenance events

This table contains a row for each workflow in the provenance database. Each
workflow has a unique LSID and id. A workflow may optionally have a (non-unique)
name. The LSID in table does not include the revision.

6.2. Workflow Evolution

6.2.1. Workflow_change

 Name Type References Recorded By

id long evolution/specificationStart()

host_id varchar evolution/specificationStart()

time datetime evolution/specificationStart()

user varchar evolution/specificationStart()

wf_id long workflow(id) evolution/specificationStart()

Each row in this table corresponds to a user-driven workflow update. Currently, this
is only recorded when specifying the workflow structure the first time, or when
parameter values change. In the future, this table could be used to record when
actors, directors, etc. are added or removed from the workflow.

6.3. Workflow Execution

6.3.1. Actor_fire

 Name Type References Recorded By

actor_id long actor(id) actorFire()

end_time datetime actorFire()

id long actorFire()

start_time datetime actorFire()

wf_exec_id long workflow_exec(id) actorFire()

 9

This table records information about actor firings for a particular actor (actor_id) in
a particular workflow execution (wf_exec_id).

6.3.2. Associated_data

Name Type References Recorded By

data_id varchar data(md5) addFileForExecution()

id long addFileForExecution()

name varchar addFileForExecution()

val varchar addFileForExecution()

wf_exec_id long workflow_exec(id) addFileForExecution()

This table provides a mechanism for files and other data objects to be stored for a
given workflow execution. It is primarily used to store files that capture the state of
the workflow at the time of execution and/or the results of the execution (in the
case of the reporting module). It is similar to how the workflow MoML is saved at
each execution - providing a snapshot of that point in time.

When interacting (inserting and querying records) from this table one or more
metadata name/value pairs can be utilized. Note that in the simplest case there will
be a single row for a single data object with one name/value pair. In future uses of
the table there may be multiple rows for the same data object that differ only by the
metadata name/value pairs. Imagine a case in which the same file is stored for
different reasons by different modules. Similarly, multiple metadata rows will be
useful for limiting the results of querying for particular data objects for a given
execution in cases where there are many associated data files for that execution.

6.3.3. Data

 Name Type References Recorded By

contents BLOB portEvent(), executionStart()

md5 varchar portEvent(), executionStart()

truncated boolean portEvent(), executionStart()

This table contains data used by the workflow including tokens, and workflow
MoMLs. If the data was too large to be stored in the contents column, truncated is
true.

6.3.4. Error

 Name Type References Recorded By

entity_id long

id long

exec_id long workflow_exec(id)

message varchar

 10

This table stores errors that occur during workflow executions. The error string is in
message and entity_id is the workflow component that created the error. Both
message and entity_id are optional.

6.3.5. Parameter_exec

 Name Type References Recorded By

parameter_id long parameter(id) executionStart()

wf_exec_id long workflow_exec(id) executionStart()

This table records the values of all parameters at the start of a workflow execution.
(Parameter values may change during the execution; use the parameter table to
access additional values).

6.3.6. Port_event

 Name Type References Recorded By

channel long portEvent()

data varchar portEvent()

data_id varchar data(md5) portEvent()

file_id varchar data(md5) portEvent()

fire_id long actor_fire(id) portEvent()

id long portEvent()

port_id long port(id) portEvent()

time datetime portEvent()

type varchar portEvent()

write_event_id long portEvent()

Each token read or write is stored as a row in this table. A port event occurred at
time, on port port_id, and on channel from actor firing fire_id. If the size of the
token’s string value is less than or equal to 4096 characters, then the value is stored
in data. Otherwise, the value is stored in data(contents) and referenced by data_id.
The token’s class name is in type. If the token is a string containing a file name, and
the size of the file is less than maxFileInclusionSizeKB (a parameter in the
provenance configuration file), then the contents of the file are stored in the data
table and a reference to the contents is stored in file_id. If the port event represents
a read, write_event_id is the port_event(id) of the port event that generated the
token; otherwise (the port event is a write) write_event_id is -1. For read events,
data, data_id, and type are not set since they are already provided in the write event.

6.3.7. Workflow_exec

 Name Type References Recorded By

annotation varchar executionStart()

derived_from varchar insertRunReferralList()

 11

end_time datetime executionStop()

host_id varchar executionStart()

lsid varchar executionStart()

id long executionStart()

module_dependencies varchar executionStart()

start_time datetime executionStart()

user varchar executionStart()

wf_contents_id varchar data(md5) executionStart()

wf_full_lsid varchar executionStart()

wf_id long workflow(id) executionStart()

Each row in this table corresponds to a workflow execution; it describes which
workflow executed, who ran it, the start and stop times, and a unique LSID assigned
to the execution. The wf_contents_id column references the workflow MoML (as it
exists at the start of the execution). Additionally, an annotation string may be
specified for each execution. The workflow’s LSID (including revision) is stored in
wf_full_lsid. The module_dependencies column contains the list of currently running
Kepler modules.

6.4. The HSQL Query Browser

Kepler writes provenance information to an HSQL database by default. You can start
a graphical query browser to view the contents of this database; e.g., you can
execute the SQL queries described in the next section. To start the HSQL query
browser, run $HOME/KeplerData/kepler.modules/provenance-2.5.0/prov-hsql.sh on
Mac or Linux, or %USERPROFILE%/KeplerData/kepler.modules/provenance-
2.5.0/prov-hsql.bat on Windows.

 12

Figure 3: The HSQL Query Browser

The query browser is shown in Figure 3. The pane on the left side shows all the
tables in the database. In the top right, you can enter SQL commands, and the results
are shown in the bottom right.

6.5. Example SQL Queries

1. What workflow names does the database contain?

SELECT name

FROM workflow

2. What are the run ids for workflow “a”?

SELECT wf_exec.id

FROM workflow_exec wf_exec, workflow wf

WHERE wf_exec.wf_id = wf.id AND wf.name = ‘a’

3. What are the ids for all data transferred between actors for run 2?

SELECT pe.data_id

FROM port_event pe, actor_fire af

WHERE pe.fire_id = af.id AND af.wf_exec_id = 2

4. What is the workflow definition (MoML) for a run 2?

SELECT d.contents

 13

FROM data d, workflow_exec wf_exec

WHERE d.md5 = wf_exec.wf_contents_id AND wf_exec.id = 2

5. What are the names and values of each parameter for run 2?

SELECT e.name, p.value

FROM entity e, parameter p, parameter_exec pe

WHERE pe.parameter_id = e.id AND pe.parameter_id = p.id AND

pe.wf_exec_id = 2

For additional SQL queries, see org.kepler.provenance.sql.SQLQueryV8.

	1. Introduction
	2. Downloading and Installing the Provenance Module
	3. Capturing Provenance
	3.1. Configuring Storage Location

	4. The Provenance Manager Command-Line Program
	5. Provenance Query API
	6. Relational Schema
	6.1. Specification Tables
	6.1.1. Actor
	6.1.2. Director
	6.1.3. Entity
	6.1.4. Parameter
	6.1.5. Port
	6.1.6. Tag
	6.1.7. Workflow

	6.2. Workflow Evolution
	6.2.1. Workflow_change

	6.3. Workflow Execution
	6.3.1. Actor_fire
	6.3.2. Associated_data
	6.3.3. Data
	6.3.4. Error
	6.3.5. Parameter_exec
	6.3.6. Port_event
	6.3.7. Workflow_exec

	6.4. The HSQL Query Browser
	6.5. Example SQL Queries

